
Based on the French SEDORIC V1.0 manual
by Fabrice Broche and Denis Sebbag

SEDORIC DOS

Version 3.0

A USER'S GUIDE

by Jonathan Haworth and Allan Whitaker

Third Edition

April 1996

SEDORIC DOS

Version 3.0

Copyright 1990, 1991, 1992, 1995, 1996

(1995 and 1996 additions and revisions by Jonathan Haworth)

C O N T E N T S

INTRODUCTION 1
Conventions and notations 2
Filenames 3

DISC OPERATING COMMANDS 4
Disc directory 5
Loading and saving a file 7
Deleting and modifying a file 9
Initialising and copying of discs 11
Disc configuration 13

EXTENDED BASIC 15
BASIC programming aids 15
Changing the keyboard 19
Function key set-up 21
String commands 27
Error handling routines 29
Text formatting 30
Formatted screen/printing 32
Printer output 33
Graphic instructions 34
User commands 36
Other commands 38

DATA FILES 39
Sequential files 39
Random access files 43
Transfers between buffer and disc 44
Working on the buffer 45
Transfers between fields and variables 46
Disc access 47
Sector reservation 48

INDEX OF DOS KEYWORDS 49
APPENDICES 50

DOS Keyword Addresses and Codes 50
Error Messages 51
Function Key Codes 52
System Variables 53
Disc Structure 54
File Status Byte Coding 55
Keyboard Codes for KEYIF Instruction 55
Switching between RAM and ROM 55
Utility Files on SEDORIC Master Disc 56
Known bugs and limitations - V1.006 58
Developments and solutions - V1.007/V2.0/V2.1 58

1

SEDORIC - A USER'S GUIDE

INTRODUCTION

SEDORIC is a fast, sophisticated Disc Operating System (DOS) for the Oric computer. It is capable

of reading or writing 24 kilobytes of code in less than 3 seconds. Despite the sophisticated features

of the DOS the amount of memory taken away from the user is minimal. Pages 1 and 2 are not used.

On booting the SEDORIC DOS disc the DOS code is loaded into memory addresses #C000 to

#FFFF in RAM overlay. The DOS makes use of memory locations in page 0 and page 4 is entirely

allocated to SEDORIC. The Oric ROM is switched in and out as needed in order to access BASIC.

Booting SEDORIC carries out a NEW command on any program in memory, though a BASIC
program can be recovered with the OLD command. Before control is passed to BASIC, SEDORIC
executes a series of initialisation instructions particular to the disc. These may be modified by the
user, to include the loading and execution of your own keyboard file or program to personalise the
boot. Two types of discs can be formatted - a 'Master', containing the full DOS, and a 'Slave' which
can only be used when the DOS is already in memory. If the DOS is missing, the error message
'**WARNING** DOS is altered!' is displayed, requiring the insertion of a Master disc into the
system drive if the DOS in memory has been affected.

You are strongly advised to make a backup copy of the SEDORIC disc for daily use, preserving the
original. To do this type BACKUP (or BACKUP A TO B if you have two disc drives of the same type)
and press RETURN. Press RETURN again and answer 'Y' to the question 'Format target disc Y/N'.
Then follow the displayed instructions to carry out the BACKUP.

To display the contents of your SEDORIC disc, type DIR and press RETURN. To load a program
displayed in the directory, simply type in its name and press RETURN. To exit and reboot
SEDORIC, just press the disc drive RESET button.

To save a BASIC program, type SAVE "NAME" and RETURN. A DIR will prove it has been saved
to disc. You will note that the directory of the disc displays the file as NAME.COM. The '.COM' is
known as the filename extension and will be covered in more detail in the section on filenames. For
now we can ignore it. To recall a program, just type its name (as before), i.e. NAME + RETURN.
You can also type LOAD "NAME" which has the same result.

If you wish to remove a file from the disc, type DEL "NAME" and RETURN. To rename a program,
use REN. Thus REN "NAME" TO "TEST" will change the name of 'NAME' to 'TEST'.

To initialise a blank disc for use by SEDORIC only requires that you type INIT and RETURN. You
will probably come across the message "INSERT MASTER DISC IN DRIVE A". Do so, and press
RETURN; the routine you are using will then be loaded into memory. This is necessary because the
whole of the DOS is too large for the available memory. Certain commands therefore have their
routines stored on disc ready to be loaded when required. Once loaded the command can be used
repeatedly until another such command routine has to be loaded (e.g. BACKUP) or the computer
is switched off. Put in your blank disc, then answer the displayed questions.

As with the BACKUP of a disc, you can make a copy of your programs by using the COPY command
(e.g. COPY "TEST") and again follow the displayed instructions.

2

After this brief introduction, you are recommended to read the section entitled 'Disc operating
commands' starting on page 4 of the manual to discover the full potential of SEDORIC.
Furthermore, SEDORIC provides you with some 60 additional BASIC instructions, and a
comprehensive suite of sequential and random access file routines. You will find plenty to keep
you occupied while learning to get the best out of SEDORIC!

Note that the SEDORIC disc contains several utilities in addition to the DOS. These are
described in detail in the Appendix on p. 54, but take particular note of the CONVERT utility
to transfer Oric DOS and Jasmin FT-DOS programs to SEDORIC format.

SEDORIC DOS makes full use of the FUNCT key on the Oric Atmos. In conjunction with the
other keys it can provide many functions which are used simply by pressing FUNCT and
another key or keys. You can set up your own function keys with the KEYDEF and KEYUSE
commands. Thus, FUNCT and the 7 key resets the screen colours; FUNCT and RETURN
together provides automatic numbering of program lines.

A new control character - CTRL-P - has been added to provide an on/off toggle for the cursor
flash. Within programs use PRINT CHR$(16).

Facilities are provided to avoid inopportune system 'crashes'. SEDORIC controls any BREAK
and displays a 'BREAK ON BYTE #XXXX' message. The ESC key provides a way out of all
interactive commands such as DIR, DEL and INIT.

Whereas all Disc Operating Systems previously offered for the Oric computers have required
keywords to be prefixed with the exclamation mark (!) SEDORIC DOS allows the entry of
keywords without this need. The exception is following the use of the QUIT command which
makes the prefixing of DOS keywords or filenames (in direct mode) with the exclamation mark
mandatory.

As with BASIC, all DOS keywords must be typed in upper case. BASIC keywords can safely be
used in filenames, providing they do not form the start of a filename being loaded in direct
mode, e.g. STOPPER. Filenames can also be typed in lower case letters although if BASIC
keywords are embedded they must always be typed in upper case, as in 'STOPper'.

Conventions and notations

The following conventions and notations are used in this manual:

A COMMAND appears in bold or italic capital letters, as does a program line. Key presses are
indicated by outline capitals. Optional parameters are enclosed in brackets. A command is
entered by pressing the RETURN key.

° indicates additional comments for more advanced use of SEDORIC

0 indicates a bug or other curiosity in SEDORIC

3

Abbreviations:

Drive - the parameter is a drive number - A, B, C or D (as in MS-DOS). The default is the
current drive.

FN - File name required, must not contain wildcards

FNA - File name ambiguous - File name required, but can include wild card characters
(? and *). It is possible to omit the filename altogether or just to specify the drive
name.

NE - Numeric expression

AE - Alphanumeric (string) expression

NV - Numeric variable - a variable name is required

AV - Alphanumeric (string) variable

LN - Logical number - refers to a block number used in the control of files.

FLN - Field name - used in random access file control

The ESC key enables you to exit from all positions where input is required from the user.

Filenames

A filename is generally a string of characters enclosed in double quotes, or a string expression.
An exception is adopted for the loading of files in direct mode, when the filename alone suffices.

A filename may consist of up to three parts:

 (i) the drive to use (optional)
 The drives are designated A to D, and when specified the letter is followed by a hyphen.

When not specified the current (default) drive is used. The use of letters to denote each
drive allows the drive to be specified in direct mode. The use of numerals would be
treated as lines of a BASIC program.

 (ii) the file identification name ('the filename')
 Of up to 9 characters, this must be specified. Only alphabetic and numeric characters

may be used, save for the wildcard characters '?' and '*'.

(iii) the file extension (optional)
 When specified, this is separated from the filename by a full stop. It comprises up to

three characters, enabling files to be categorised (e.g. .BAS, .BIN etc). When no extension
is specified the default is assumed (see the EXT command). On initialisation the default
is .COM.

Ambiguous filenames (FNA) are valid for such commands as DIR, DEL and COPY etc. The '?'
is substituted for individual letters, the '*' for a group of characters to the end of the name. So
DEL "*.BAS" deletes all files with the extension .BAS, whereas DIR "M*" lists all filenames
starting with the letter M sharing the default extension. The asterisk does not extend beyond
the part of the filename it is placed in. In DOS commands where ambiguous filenames are
allowed it is possible to omit the drive, extension or filename characters, or to substitute
wildcard characters (e.g. *.*). In the latter example, all files on the default drive are accessed.

4

DISC OPERATING COMMANDS

On its own, it sets the default (or current) drive. Used with a filename it allows temporary access
to the specified drive but the default drive is unchanged. The drive name is optional in the
filename. If used with the LOAD command it must be within the quotes for the filename. If not
specified, the default drive is accessed.

B- selects drive B as the default
A-MENU load MENU(.COM) from drive A, but B would

remain the default drive
LOAD "C-HELP.BAS"

Specifies the default file name extension to 3 characters. On initialisation the default name is
.COM

EXT "BAS"

EXT ?

Displays the current default extension.

0 Curiously, this can be entered as EXT PRINT as well!

EXT

Resets the default extension to .COM

(drive)-

EXT AE

5

DISC DIRECTORY

Catalogues the disc. The display can be interrupted by pressing a key; press the SPACE BAR to
restart, ESC to exit. Each filename is shown with the number of sectors it occupies. Protected
files are marked with a 'P'. The number of files is limited only by disc capacity.

DIR
DIR "*.BAK"
DIR C

CHKSUM NFA (,AUTO)

An extended DIR command that lists the filenames on the disc in the default or specified drive
together with their start, end and execution addresses, their file type and a checksum of all the
bytes in the file. The latter is useful to see whether two files are identical or not. See LOAD, V
on page 7 for an explanation of file status information.

If the ,AUTO parameter is omitted, a key must be pressed for the next file to display. If it is
included, all relevant files will display automatically, but may be halted by pressing SPACE and
restarted by pressing any other key. ESC exits at any time.

CHKSUM "PROG.BAS"
CHKSUM "*.TXT", AUTO

View all HIRES screens on the disc in the default or specified drive. The command benefits from
the use of the convention that all HIRES screens are saved with the .HRS extension.

If the ,AUTO parameter is omitted, a key must be pressed for the next file to display. If it is
included, all relevant files will display automatically, but may be interrupted by pressing SPACE
and restarted by pressing any other key. ESC exits at any time.

VIEWHIRES "SCREEN.HRS"
VIEWHIRES "*.HRS", AUTO

DIRFNA

VIEWHIRES NFA (,AUTO)

6

Catalogues the disc sending the output to the printer.

Checks if a file is on disc. If so, the system variable EF=1, if not 0. If EF is to be used in a logical
expression then -EF must be used to achieve the correct logic values (-1=TRUE, 0=FALSE).
Ambiguous filenames may be used, when EF=1 if at least one match is found.

10 SEARCH "TEST"
20 IF EF=1 THEN LOAD "TEST" ELSE PRINT "File not found"

LDIR FNA

SEARCH FNA

7

LOADING AND SAVING A FILE

Loads a file. Options:
, A, NE loads the file at the address specified in NE
, J joins the file to a BASIC program
, N stops autorun after loading
, V shows the file status, but does not load it (see also CHKSUM).

File status is shown in the format SSSS FFF SS EEEE
where SSSS is start address of file (no. of records for random access file)

FFFF is end address of file (length of random access file)
SS is the file status byte -

80 = BASIC
81 = BASIC auto
40 = Machine code
41 = Machine code auto
(see the Appendix on p. 55 on file status byte coding)

EEEE is execute address for a machine code program - default value is 0.

Alternatively the file status can be obtained when loading a file by examining the system
variables ST (STart address), ED (EnD address), FT (File Type), and EX (EXecution address).
Note that these variables will be cleared if a BASIC program is allowed to run on loading. They
may also be corrupted if a file is loaded into the area of memory occupied by the variables. To
preserve them, use the ,V option which will only load in the status byte and not the whole file.

LOAD "TEST"
LOAD "B-ROUTINES", J, V
LOAD A$ + ".TXT", A#4000

° The options ,A and ,J are mutually exclusive, as are ,V and ,N. The option ,V used with ,A
or ,J displays the new addresses of the start and end of file - very practical.

It is unnecessary to use LOAD unless the filename is expressed as a variable, e.g. LOAD A$. It
is enough simply to type the filename to load it - provided the filename does not start with a
BASIC keyword or a number. If it does, specify the drive, e.g. A-LOADER. Note that after QUIT
is used, the ! must be used as a prefix to the filename.

TEST
B-DESIGN.SCR, A#1000
ROUTINE.BAK, V

LOAD FN (, A, NE) (,V) (, J) (, N)

(FILENAME) (, A, NE) (, N) (, J) (,V)

8

Saves the file with the name FN to disc.

The four save commands only have different effects if the filename already exists on disc. The
syntax is as for CSAVE; if no option is used, the current BASIC file will be saved. The ,A and ,E
extensions are for machine code file start and end addresses only. As on cassettes, it is the status
of the saved file which determines whether it autoruns or not. The status can easily be altered
subsequently (see the STATUS command). Using , T NE enables an execution address to be
specified that is not the file start address. This is not operative for a BASIC program.

If the file already exists:
SAVE gives a 'File already exists' message
SAVEO overwrites the existing file unless it is protected
SAVEM the new file saved is appended to the existing file on disc
SAVEU the existing file is preserved as a .BAK file. Any existing .BAK file is lost.

SAVE "TEST", AUTO
SAVEM "DESIGN.HRS", A#9800, E#BFDF

° The SAVEM command does no more than juxtapose the new file with the old one under
one name. It has nothing to do with the ,J option for LOAD, for example. A LOAD will load both
sections of the new file together.

Saves the current screen (TEXT or HIRES). The computer must be in the same mode when the
file is reloaded.

ESAVE "STORY.TXT"
ESAVE "DESIGN.HRS"

° This command is equivalent to SAVEU FN, A#BB80, E#BFDF in Text mode, and SAVEU
FN, A#A000, E#BF3F in Hires mode.

SAVE FN (, A NE) (, E NE) (,T NE)
(,AUTO)
SAVEO " " " " "
SAVEM " " " " "
SAVEU " " " " "

ESAVE FN

9

DELETING AND MODIFYING A FILE

DEL FNA

Deletes an unprotected file. Wild cards are permitted, in which case confirmation is requested
for each file. Use ESC to exit.

DEL "TEST.COM"
DEL "*.BAS"
DEL
DEL B

DANGEROUS! As for DEL, but with no request for confirmation. Protected files are not
affected. DESTROY alone will delete all files on disc. If used in error, RESET to salvage as many
files as possible.

DESTROY "*.BAK"

Deletes all .BAK files without asking for confirmation.

DELBAK
DELBAK B

REN FNA (old) TO FNA (new)

Renames a file. Both the new and old filenames are displayed. Wildcards are allowed, provided
they are in the correct corresponding positions.

REN "PROG.DAT" TO "GAME.COM"
REN "*.COM" TO "*.BAS"
REN "PROG?" TO "TEST?"

DESTROY FNA

DELBAK (drive)

10

Allows you to change the status of a file without having to load and save it, following the syntax
for SAVE. If no option is specified, autorun is removed.

, A NE alters the loading start address; the DOS calculates the new end address
itself

, T NE forces a machine code file to AUTOrun from the address specified in NE.
For BASIC files is equivalent to ,AUTO

, AUTO forces a BASIC or machine code file to AUTOrun from the start.

STATUS "TEST"
STATUS "MENU", AUTO
STATUS "B-PROGMC", A#4000, AUTO
STATUS "PROG.COM", T#5000

° If files have been grouped using SAVEM or COPYM, this command only affects the first
file, which is also then the only one initiated on a LOAD.

Protects a file from deletion or overwriting. A letter 'P' is displayed by the filename in the
directory.

PROT "TEST"

Removes protection from the file and the 'P' from the directory.

UNPROT "*.COM"
UNPROT B

STATUS FN (, A NE) (, T NE) (, AUTO)

PROT FNA

UNPROT FNA

11

INITIALISING AND COPYING OF DISCS

INIT (drive , no. of sectors , no. of tracks , S or , D)

To initialise a disc, follow the on-screen instructions (use ESC to abort). The number of sectors
per track and the number of tracks may be specified along with , S or , D to indicate a single or
double-sided drive. The number of tracks per side must be between 21 and 101 inclusive, and
the number of sectors per track between 16 and 19 inclusive. Any value outside these
parameters will produce an error message. The maximum number of tracks on a 3½" or 5¼"
disc is recommended to be 82. Specifying 16 or 17 sectors per track gives the highest reliability
and fastest speed. The default value is 17 sectors, single-sided, but this can be preset to a new
value, associated with each disc, using the command DTRACK.

You are offered the options to format and name the new disc, to enter an initial command
statement to run on booting, and to make it a Master disc (with full DOS) or a Slave disc (saving
90 sectors).

INIT INIT B,17,42 INIT C,17,80,D

Several replies are required from the user:

- Format (Y/N): Answer 'Y' to format or 'N' to go directly to the next stage

- Name: Enter a name for the disc. To include attributes in the disc name use
CTRL-Z followed by the appropriate code as used with the ESC key in
direct mode or CHR$(27) in program mode.

- Init Statement: Enter the instruction(s) to execute on booting the disc. If none, the disc
will go straight to BASIC command level

- Master Disc (Y/N) Enter 'Y' for a Master disc, 'N' for a slave disc. A Master disc has a full copy
of the DOS, a slave disc must only be used with the DOS loaded, but
provides an extra 90 sectors.

° Although the parameters are not obligatory, they cannot be used beyond an omitted
parameter. Thus INIT - INIT A - INIT, 16 - INIT 18,41 - INIT 19, 40, D are acceptable, but INIT
A, , 42, S - INIT A, , ,S are not.

° Formatting a disc will erase any existing files on disc. INIT affects memory from #3000 to
#B0FF, so save any program in memory before using it.

WARNING! If asked to insert a Master disc be sure to replace it with the disc being initialised
before answering the Format (Y/N) request, otherwise you could reformat your master disc if
it is not write-protected.

12

Copies one disc (the source) to another (the target). It affects memory from #0600 to #B4FF.
Use identically formatted discs or a 'DISC I/O' error is generated. On a single drive you must
exchange the source and target discs as prompted. It is advisable to write-protect the source
disc.

BACKUP
BACKUP TO B
BACKUP C

COPY (COPYM or COPYO) (FNA) (TO FNA) (, N) (, C)

Copy files - M and O work as for SAVE.

COPY checks the file is not already on the target disc. If so, a 'FILE ALREADY EXISTS'
message is displayed

COPYO overwrites such an existing file, otherwise works as COPY
COPYM permits a merge copy to one file of several files by the use of wildcards - if the

target file already exists, the source files are merged to it. If not, a new file
comprising all the source files is created.

COPYM "A-*.CDE" TO "B-PROG"

, N copies files on the source disc itself, omitting the change disc prompts.
, C asks for Y/N confirmation for each file to be copied

With wildcards, two uses exist:

With COPY and COPYO the source filename can contain wildcards. If so, there must be a
corresponding wildcard in the target filename. The various files so specified are then copied
with their correct source filenames. The only exception to this is that you may put a wildcard
in the source filename and omit a target filename, or compose the target filename entirely of
wildcards (e.g. *.*)

With COPYM the source filename can contain wildcards, but never the single target filename.

COPY "A-TEST" TO "B-PROG" copies the file TEST from drive A to drive B and renames it
PROG.
COPY "B-*.COM" TO C-*.CDE" copies all files with the .COM extension on drive B to drive C,
giving them the new extension .CDE.

° Note that while CLOAD, J LOAD, J and MERGE work only with BASIC files, COPYM
works with all file types. COPY without a source filename copies all files from the current disc.
The target filename may also be omitted (in which case the files are copied to the current drive),
except of course with COPYM, which must have a specific target filename.

BACKUP (drive) (TO) (drive)

13

DISC CONFIGURATION

When first receiving your SEDORIC V2.0 Master disc you need to check the configuration of
your disc system and correct it if it is set wrongly on the master disc. You can check the
configuration by using the DSYS command. For instance, if you have two 3" disc drives
connected and when you checked, using DSYS, your system was set to the following:-

drive A ... 42 tracks 17 sectors, single-sided
drive B ... 82 tracks 17 sectors, double sided

then use the DTRACK command to set the correct configuration on the master disc (ensure the
master disc is not write-protected). This is achieved by entering:-

DTRACK 42, 42 or DTRACK A, 42, 42

To configure one double-sided 3½" disc drive it would be:-

DTRACK 80; D

SYS

Displays the DOS configuration in memory (not that on disc) and drives connected.

DSYS (drive)

Displays the DOS configuration saved on the specified disc.

DSYS B

DNAME (drive)

Modifies the name of the disc in the specified drive (or default if none is specified), displaying
the old name and then requesting and writing the new one. The maximum is 21 characters. To
add attributes, use CTRL-Z as for the INIT command (see page 11).

DNAME
DNAME A

INIST (drive)

Modifies the initialisation instructions on the specified disc, allowing you to personalise the
start-up routines. Displays the old instructions (if any) and requests the new one. Maximum
length is 60 characters, and attributes may be entered. Note the bug dealt with under PR, page
33.

INIST A
INIST B

14

DKEY (drive) (, A) (, S)

Sets the disc start-up keyboard configuration - QWERTY and accents off if no option is
specified, AZERTY with , A , with accents with , S . The comma is still necessary when no drive
is specified.

DKEY B, A
DKEY, S

A B C DTRACK (NE) (, NE) (, NE) (, NE)

Modifies (only in memory) the disc drive configuration by setting the number of tracks for each
drive. A value of "0" disables the drive, which then on access will give a 'DRIVE NOT IN LINE'
error. To configure a drive as double-sided, add ";D" to the number of tracks. The default is
single-sided. If skipping a drive the comma must still be inserted.

TRACK 41,,42; D sets drive A to 41 tracks and drive C to 42 tracks double-sided

A B C DDTRACK (drive) (NE) (, NE) (, NE) (, NE)

As the above command, but the change is made on disc and not the DOS in RAM. The format
is then loaded on each initialisation.

DTRACK A, 42

DNUM (drive) (, NE) (, NE)

Modifies on the disc in the specified drive the default initialisation values for respectively the
first line and step values for the renumbering commands NUM and RENUM and for auto line
numbering. If the drive letter is omitted the first comma must still be used, as must the second
if you only wish to alter the step value.

DNUM B, 100, 10
DNUM , , 10

° DNUM alone has the effect only of loading Bank 5 from disc into memory. This could
enable the use of the Bank 5 commands within a machine code program.

SYSTEM (drive)

Specifies the disc drive on which is the DOS containing transient command files. The default
drive on booting is always A.

SYSTEM D

15

EXTENDED BASIC

BASIC PROGRAMMING AIDS

1 2 3 4RENUM (NE) (, NE) (, NE) (, NE)

Renumbers all or a block of a BASIC program. The parameters should be entered in the
following order:

1 - NE new first line number
2 - NE line increment required
3 4 - NE and NE the first and last line numbers of the program to be renumbered.

If any values are not declared the default values are:
Start line number = 100
Increment = 10
First/last line = the first/last lines of the existing program.

The values for the origin and step can be modified with the DNUM command. All GOTO,
GOSUB, ON GOTO, ON GOSUB, THEN, ELSE, RUN, and RESTORE commands are correctly
modified. Numeric expressions and variables(e.g. GOTO 100*A: GOTO AB) are NOT modified.
Use ON GOTO or ON GOSUB instead.

RENUM = RENUM 100, 10
RENUM1000 = RENUM 1000, 10
RENUM,,,10000 = RENUM 100, 10, 0, 10000
RENUM1000,,2300 = RENUM 1000, 10, 2300
RENUM100,10,0,10000 is the full command.

° This command affects only the actual line number. It does not reposition the block of lines
in memory, e.g. RENUM 100,10,20,30 gives:

10 REM EXAMPLE 10 REM EXAMPLE
20 PRINT "TEST" 100 PRINT "TEST"
30 PRINT "EXAMPLE" 110 PRINT "EXAMPLE"
40 END 40 END

To move lines, cut out the lines to move (in continuous blocks), renumber them, save them, and
then reunite them with the original using LOAD, J or MERGE.

0 In direct mode it is possible to enter line numbers up to 63999 (#F9FF). By using RENUM
lines can be numbered up to 65534 (#FFFE). But beware, because certain commands will give
an 'ILLEGAL DIRECT ERROR' if they are found in a line with a number above 65729 (#FEFF).
Numbers #FF00 and above give such an error because the #FF acts as the direct mode
indicator.

0 There is no validation of the parameters for RENUM. Thus a step of 0 works, but all lines
have the same number! Save your program before each RENUM to be safe.

0 The BASIC token RESTORE (#9A) calls the ROM, and is taken account of by RENUM but
not correctly dealt with because of the lack of an argument! Always use "!RESTORE".

16

MERGE FN (, L)

Merges the BASIC program in memory and the BASIC program specified. If the resultant
program is too large for the available memory an 'OUT OF MEMORY' error will be generated.
All variables are preserved, but as usual any functions defined by DEF FN are lost. If the same
line number appears in both programs, the one in memory will be used and a 'LINE ALREADY
EXISTS' message displayed. The command can be speeded up by omitting the on-screen
information if you add , L.

If using MERGE within a program, ensure no line will be inserted before the line containing the
MERGE command, otherwise a 'SYNTAX ERROR' is generated.

MERGE "PROG"
MERGE "TEST", L

SEEK (AE) (, S) (, M)

SEEK AE lists all program lines in which the string AE exists. The listing can be interrupted
with SPACE or CTRL-C as usual. The string must not include the ASCII nul code CHR$(0),
otherwise an 'INVALID STRING ERROR' is generated.

To search for BASIC keywords AE must contain the token value (see TKEN) rather than the text
equivalent (e.g. #80 for END). The string may include wildcards; the wildcard character is '£'
because of the frequent use of '?' in BASIC.

SEEK CHR$(#80)
The maximum string length is 79 bytes.

Option , S omits the screen listing, giving simply a total number of occurrences. Option , S, M
omits any screen information. In each case the system variable SK contains the number of
occurrences.

SEEK alone (used after a SEEK AE) displays each line occurrence one at a time for each entry
of the command. The prescribed string remains in memory until another SEEK AE or a RESET.

Example: Given the following program in memory

10 REM TEST SEEK SEDORIC 0.0
20 PRINT "HELLO SEDORIC 1.0!"
30 END

SEEK "HELLO" lists line 20
SEEK "HELLO",S displays 1 Found
SEEK "ORIC £.0" lists lines 10 and 20

then SEEK lists line 10, and another SEEK lists line 20
SEEK CHR$(#BA) lists line 20 since #BA is the token for the PRINT command

° Useful tokens are: 191 for CALL, 192 for !, 182 and 183 for CLOAD and CSAVE, 230 and
231 for PEEK and DEEK,185 and 138 for POKE and DOKE, and 157 and 39 for REM and '.

17

1 2CHANGE AE TO AE

1 2Replaces all occurrences of string AE by the string AE in a BASIC program. As for SEEK, the
strings must not contain the ASCII Nul code CHR$(0), but may contain BASIC tokens. The
maximum length of string is 78 bytes. The "£" is the wildcard character. If the '£' is present in
the same place in both strings, that character will not be modified; if it is only present in the
first string, it will be replaced by the character in the same place in the second string.

Note that use of the wildcard in the target string will be treated literally. Use of the wildcard
enables several strings to be replaced by one, but not a 'selective' change as with the REN
command for filenames.

If the BASIC program is made too large for the available memory, the 'OUT OF MEMORY
ERROR' is generated and execution halted. If the string exchange would result in a line being
too long then the error message 'LINE; XXXX ?STRING TOO LONG ERROR' is displayed.

CHANGE CHR$(#BA) TO CHR$(#8F) changes all PRINT commands to LPRINT.
CHANGE CHR$(157) TO CHR$(39) changes all REMs to '
CHANGE "ORIC" TO "ORIC ATMOS"

In the example program under SEEK, the command:

CHANGE "ORIC £.0" TO "BOOM !" gives the lines:

10 REM TEST SEEK SEDBOOM !
20 PRINT "HELLO SEDBOOM !"

2 1° The second string AE may be empty, but not the first AE . This can be used to remove all
occurrences of a command, e.g. to remove all REMs use

CHANGE CHR$(157) TO ""

2° The second string AE need not be tokenised for BASIC keywords. Thus to alter the
command WAIT 50 to WAIT 100 at every occurrence use

CHANGE CHR$(181)+" 50" TO "WAIT 100"

° Remember that TKEN is useable only in program mode.

18

1 2DELETE (NE) - (NE)

Deletes a block of lines from a program without losing variable values. The syntax is as for LIST,
but the "-" is mandatory. Without it DELETE causes a SYNTAX ERROR. DELETE- is equivalent
to a NEW. If using DELETE within a program, ensure the command is not placed in or after the
block to delete. User functions defined by DEF FN located in the deleted block will be lost, but
variable values are preserved.

DELETE 100-100 deletes line 100
DELETE -1000 deletes all lines up to line 1000
DELETE 234-987 deletes lines 234 to 987

0 If a parameter exceeds 63999 (possibly after a RENUM), an ILLEGAL QUANTITY ERROR
follows. It is then impossible to delete certain lines.

1 2NUM (NE) (, NE)

1 2Sets the parameters for automatic line numbering. NE is the start line, and NE the increment.
Each press of FUNCT + RETURN ends the current line and numbers the next.

The default values are as for RENUM, start line 100, increment 10. They can be modified by
DNUM.

NUM 1000 numbers in tens from line 1000
NUM, 5 numbers by fives from line 100
NUM 3300, 20 numbers by twenties from line 3300

° NUM alone is very useful - it restores the default values as the current ones.

0 Be aware that there is no validation of parameters. Thus any line number, even above
63999 is accepted - beware!

NUM END

If this command is entered, the DOS automatically finds the number of the last line of a BASIC
program already in memory, and starts automatic line numbering at the line following (line
number plus default increment).

19

CHANGING THE KEYBOARD

KEY SET or KEY OFF

Inhibits (OFF) or authorises (SET) the keyboard. Switching the keyboard off speeds up a
program by 20%.

° Beware of using KEYOFF in direct mode - the keyboard will no longer respond. Do not use
a WAIT command after KEYOFF, since WAIT uses the system clock which is no longer updated
after KEYOFF. Use a FOR...NEXT loop instead.

KEYIF NE GOTO or KEYIF NE THEN

Seeks a keypress set by the argument NE. Works even if the keyboard is inhibited or several
keys are pressed together. The syntax is as for an IF THEN ELSE.

NE is a special code used to speed execution, listed in the Appendix on page 55.

100 KEYIF #84 THEN SHOOT
...
200 KEYIF AB THEN 100 ELSE PING

QWERTY

Sets the keyboard to normal (usually after an AZERTY) and executes an ACCENT OFF.
Inoperable in Hires mode.

AZERTY

Sets to French keyboard - Q becomes A
W Z
A Q
Z W
M ;
; M

It also effects an ACCENT SET. KEY$ is not affected - it reacts to the QWERTY keyboard even
after an AZERTY command. CTRL key combinations follow the AZERTY key setup, but function
key commands remain in QWERTY setup.

° This command does not work on the Oric-1 nor can it be used in Hires mode.

20

ACCENT SET / ACCENT
OFF

Redefines certain characters to show accents on screen. They have been chosen to reflect the
ASCII characters used by most printers for the French character set accents.

ASCII NORMAL ACCENTED
 40 @ à
 5C \ ç
 7B { é
 7C | ù
 7D } è
 7E $ ê

The command is not usable in Hires mode, but the character set will be preserved when
selecting HIRES from TEXT mode. ACCENT OFF resets ACCENT SET.

° The 'ê' is not available directly from one key. By default it can be obtained by using FUNCT
- 9, but this may be displaced if you create your own keyboard file (see next page).

21

FUNCTION KEY SET-UP

SEDORIC ships with a comprehensive function key set-up installed. You can, however, design
your own keyboard set-up by assigning specific effects to each key or key combination.

A function can be assigned to any key in two ways. The first is by the allocation of a
pre-determined command using KEYDEF, the second the allocation of a command defined by
the user utilising KEYDEF and KEYUSE. To use these commands effectively it is necessary to
understand how they interrelate. When a key, FUNCT + key, or FUNCT + SHIFT + key are
pressed, a unique keyboard code is generated, as indicated in the following table. Note that
there are gaps in the table, indicated by a lower case 'm'. Incidentally, the left hand column
shows the codes used by the KEYIF instruction.

Keyboard codes

Codes for Index to KEYDEF table for

key

alone 0 1 2 3 4 5 6 7 8 9 A B C D E F

key +

FUNCT

key +

FUNCT + SHIFT

#80 to #8F

#90 to #9F

#A0 to #AF

#B0 to #BF

7 J M K # U Y 8 N T 6 9 , I H L

5 R B ; . O G 0 V F 4 - 8 P E /

m m c m g f m s 1 e Z m 7 d A r

X Q 2 \ 9] S m 3 D C ' 6 [W =

#C800 to #C80F

#C810 to #C81F

#C820 to #C82F

#C830 to #C83F

#C840 to #C84F

#C850 to #C85F

#C860 to #C86F

#C870 to #C87F

Legend: c CTRL, d DEL, e ESC, f FUNCT, g left SHIFT,

m code missing, r RETURN, s right SHIFT, and # SPACE.

Exam ple: #80 corresponds to the "7" key and #BF to the "=" key.

Certain codes (exam ple #A0) do not represent any key.

By default SEDORIC assigns function codes (spanning #00 to #FF in the body of the KEYDEF
table below) to each of the key presses in the two right hand columns in the table above (and
hence to the key combinations themselves). The KEYDEF table spans values from #00 to #3F
for FUNCT + key combinations and from #40 to #7F for FUNCT + SHIFT + key combinations.
To work out the effect of a combination, firstly find the key combination on the right of the
tables below, then read off the corresponding function code on the left of the tables (the first
column is the address of the table in SEDORIC ROM, #C800 to #C87F). The many '00' entries
in the KEYDEF table correspond to a space character.

KEYDEF Table

 Function codes FUNCT + key:

C800- 07 45 57 4B 00 18 07 08 7 J M K # U Y 8

C808- 59 7B 06 09 00 42 41 52 N T 6 9 , I H L

C810- 05 66 25 00 00 5B 27 00 5 R B ; . O G 0

C818- 1B 3F 04 0A 00 5E 3D 0D V F 4 - 8 P E /

C820- 00 00 00 00 00 00 00 00 m m c m g f m s

C828- 01 00 08 00 00 00 22 FF 1 e Z m 7 d A r

C830- 6D 62 02 0C 00 0F 72 00 X Q 2 \ 9] S m FUNCT +] = DOKE#

C838- 03 31 29 00 00 0E 1E 0B 3 D C ' 6 [W =

22

KEYDEF Table (cont.)

 Function codes FUNCT + SHIFT + key:

C840- 17 B2 A8 F1 00 8C A6 18 7 J M K # U Y 8

C848- 90 C9 16 19 00 92 A2 B5 N T 6 9 , I H L

C850- 15 9C CA 00 00 D2 9B 10 5 R B ; . O G 0

C858- EB 8D 14 1A 00 87 C8 1D V F 4 - 8 P E /

C860- 00 00 00 00 00 00 00 00 m m c m g f m s

C868- 11 00 A5 00 00 00 D1 FF 1 e Z m 7 d A r

C870- A4 9A 12 1C 00 1F CB 00 X Q 2 \ 9] S m FUNCT+SHIFT+\ = VUSER

C878- 13 91 ED 00 00 1E B5 1B 3 D C ' 6 [W =

Legend: c CTRL, d DEL, e ESC, f FUNCT, g left SHIFT, m code missing, r RETURN, s right SHIFT, and # SPACE.

Then, remembering the function code, move on to the next set of tables, the function code
translations, where you can read off the effect of the function code (and therefore of the original
key combination). The default set is also contained in the disc file SEDORIC3N.KEY, and a
developer's set in the SEDORIC3D.KEY disc file. Also on the Master Disc is SEDORIC1.KEY for
those who wish to relive the vagaries of the V1.0 KEYDEF tables (see the 2nd Edition of this
Manual, page 20).

Examples: From the table above we can read that FUNCT and the] key produces function code
#0F, a predefined function which we can read in the table below directly gives the instruction
DOKE#. Similarly, FUNCT+SHIFT+\ calls the function code #1F corresponding to the new
command VUSER.

Here then is the full V3.0 function code translation table.

Standard Function Codes Translation Table

1 series: 16 commands redefinable with KEYUSE (USER FUNCTIONS, codes #00 to #0F)st

 Function

 Code

C880- 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 A0 ###############_

C890- 01 20 20 20 20 20 20 44 4F 4B 45 23 32 46 35 2C A3 ######DOKE#2F5,#

C8A0- 02 20 20 44 4F 4B 45 23 32 46 35 2C 23 34 36 37 8D ##DOKE#2F5,#467CR

C8B0- 03 20 20 20 20 20 20 44 4F 4B 45 23 32 46 39 2C A3 ######DOKE#2F9,#

C8C0- 04 20 44 4F 4B 45 23 32 46 39 2C 23 44 30 37 30 8D #DOKE#2F9,#D070CR

C8D0- 05 20 20 20 20 20 20 44 4F 4B 45 23 32 46 43 2C A3 ######DOKE#2FC,#

C8E0- 06 20 20 44 4F 4B 45 23 32 46 43 2C 23 34 36 31 8D ##DOKE#2FC,#461CR

C8F0- 07 20 20 20 20 50 41 50 45 52 30 3A 49 4E 4B 37 8D ####PAPER0:INK7CR

C900- 08 20 20 20 20 20 20 43 41 4C 4C 23 46 38 44 30 8D ######CALL#F8D0CR

C910- 09 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 FE ###############ê

C920- 0A 20 20 20 20 3F 48 45 58 24 28 50 45 45 4B 28 A3 ####?HEX$(PEEK(#

C930- 0B 20 20 20 20 3F 48 45 58 24 28 44 45 45 4B 28 A3 ####?HEX$(DEEK(#

C940- 0C 20 20 20 20 20 20 20 20 20 20 50 45 45 4B 28 A3 ##########PEEK(#

C950- 0D 20 20 20 20 20 20 20 20 20 20 44 45 45 4B 28 A3 ##########DEEK(#

C960- 0E 20 20 20 20 20 20 20 20 20 20 20 50 4F 4B 45 A3 ###########POKE#

C970- 0F 20 20 20 20 20 20 20 20 20 20 20 44 4F 4B 45 A3 ###########DOKE#

23

2 series: 16 predefined commands (codes #10 to #1F)nd

 Function

 Code

C980- 10 48 45 58 24 A8 HEX$(

C985- 11 43 41 4C 4C A3 CALL#

C98A- 12 54 45 58 54 8D TEXT CR

C98F- 13 46 4F 52 49 3D 31 54 CF FORI=1TO

C997- 14 4C 45 46 54 24 A8 LEFT$(

C99D- 15 4D 49 44 24 A8 MID$(

C9A2- 16 52 49 47 48 54 24 A8 RIGHT$(

C9A9- 17 53 54 52 24 A8 STR$(

C9AE- 18 55 4E 50 52 4F 54 8D UNPROT CR

C9B5- 19 E0 ©

C9B6- 1A 55 53 49 4E C7 USING

C9BB- 1B 56 49 45 57 48 49 52 45 53 A2 VIEWHIRES

C9C5- 1C 56 55 53 45 52 8D VUSER CR

C9CB- 1D 57 49 44 54 C8 WIDTH

C9D0- 1E 57 49 4E 44 4F D7 WINDOW

C9D6- 1F 21 52 45 53 54 4F 52 C5 !RESTORE

3 series: SEDORIC DOS keywords (codes #20 to #7F) - See Appendix on p.48rd

Code# Code# Code# Code#

21 APPEND 39 ERRGOTO 54 LDIR 6C SWAP

22 AZERTY 3B ERROR 55 LTYPE 6D SEEK

23 ACCENT 3C ERR 56 LCUR 6F STRUN

24 BOX 3D ESAVE 57 MOVE 70 SYSTEM

25 BACKUP 3E EXT 58 MERGE 71 STATUS

26 BUILD 3F FIELD 59 NUM 72 SAVEU

27 CHANGE 40 FRSEC 5A OUT 73 SAVEM

28 CLOSE 41 HCUR 5B OLD 74 SAVEO

29 COPY 42 INIT 5C OPEN 75 SAVE

2A CREATEW 43 INSTR 5D PUT 76 SEARCH

2B CRESEC 44 INIST 5E PROT 77 SYS

2D DELETE 45 JUMP 5F PR 78 SMAP

2E DESTROY 47 KEYIF 60 PMAP 79 TKEN

2F DELBAK 48 KEYUSE 61 QUIT 7A TAKE

30 DEL 49 KEYDEF 62 QWERTY 7B TYPE

31 DIR 4B KEYSAVE 63 RESUME 7C TRACK

33 DNUM 4C KEY 64 RESET 7D USER

34 DNAME 4D LINE 65 REWIND 7E UNTKEN

35 DKEY 4E LSET 66 RENUM 7F USING

36 DSYS 50 LUSING 67 REN (81) VUSER

37 DTRACK 52 LINPUT 69 RANDOM (82) WIDTH

53 LOAD 6A RESTORE (83) WINDOW

4 series: BASIC keywords (codes #80 to #FD) - See Atmos manual p.288th

Code# Code# Code# Code#

80 END 9E HIMEM BC LIST DA FRE

81 EDIT 9F GRAB BD CLEAR DB POS

82 STORE A0 RELEASE BE GET DC HEX$

83 RECALL A1 TEXT BF CALL DD &

84 TRON A2 HIRES C0 ! DE SQR

85 TROFF A3 SHOOT C1 NEW DF RND

86 POP A4 EXPLODE C2 TAB(E0 LN

87 PLOT A5 ZAP C3 TO E1 EXP

88 PULL A6 PING C4 FN E2 COS

24

89 LORES A7 SOUND C5 SPC(E3 SIN

8A DOKE A8 MUSIC C6 @ E4 TAN

8B REPEAT A9 PLAY C7 AUTO E5 ATN

8C UNTIL AA CURSET C8 ELSE E6 PEEK

8D FOR AB CURMOV C9 THEN E7 DEEK

8E LLIST AC DRAW CA NOT E8 LOG

8F LPRINT AD CIRCLE CB STEP E9 LEN

90 NEXT AE PATTERN CC + EA STR$

91 DATA AF FILL CD - EB VAL

92 INPUT B0 CHAR CE * EC ASC

93 DIM B1 PAPER CF / ED CHR$

94 CLS B2 INK D0 ^ EE PI

95 READ B3 STOP D1 AND EF TRUE

96 LET B4 ON D2 OR F0 FALSE

97 GOTO B5 WAIT D3 > F1 KEY$

98 RUN B6 CLOAD D4 = F2 SCRN

99 IF B7 CSAVE D5 < F3 POINT

9A RESTORE B8 DEF D6 SGN F4 LEFT$

9B GOSUB B9 POKE D7 INT F5 RIGHT$

9C RETURN BA PRINT D8 ABS F6 MID$

9D REM BB CONT D9 USR

5 series: Miscellaneous (codes 254 and 255)th

 FE DEL

 FF Automatic line numbering

° The developer's keyboard (obtained by loading the file SEDORIC3D.KEY) differs from the
above as follows:

1 series: 16 commands redefinable with KEYUSE (USER FUNCTIONS, codes #00 to #0F)st

 Function

 Code

C880- 00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 A0 ###############_

C890- 01 50 4F 4B 45 23 32 36 41 2C 28 50 45 45 4B 28 A3 POKE#26A,(PEEK(#

C8A0- 02 20 20 32 36 41 29 20 41 4E 44 20 23 46 45 29 8D ##26A) AND #FE)CR

C8B0- 03 20 20 20 32 36 41 29 20 4F 52 20 23 30 31 29 8D ###26A) OR #01)CR

C8C0- 04 20 50 52 49 4E 54 43 48 52 24 28 31 38 29 3B 8D #PRINTCHR$(18);CR

C8D0- 05 20 20 20 50 4F 4B 45 23 42 42 41 33 2C 23 30 8D ###POKE#BBA3,#0CR

C8E0- 06 46 4F 52 49 3D 23 42 42 38 30 54 4F 23 42 42 C1 FORI=#BB80TO#BBA

C8F0- 07 37 3A 50 4F 4B 45 49 2C 33 32 3A 4E 45 58 54 8D 7:POKEI,32:NEXTCR

C900- 08 20 20 20 20 20 20 50 4F 4B 45 23 42 42 38 30 AC ######POKE#BB80,

C910- 09 20 20 20 20 20 50 45 45 4B 28 23 32 36 42 29 8D #####PEEK(#26B)CR

C920- 0A 20 20 20 20 20 20 50 4F 4B 45 23 42 42 38 31 AC ######POKE#BB81,

C930- 0B 20 20 20 20 20 50 45 45 4B 28 23 32 36 43 29 8D #####PEEK(#26C)CR

C940- 0C 20 20 20 50 4F 4B 45 23 32 30 43 2C 23 46 46 8D ###POKE#20C,#FFCR

C950- 0D 20 20 20 50 4F 4B 45 23 32 30 43 2C 23 37 46 8D ###POKE#20C,#7FCR

C960- 0E 20 20 20 20 3F 48 45 58 24 28 50 45 45 4B 28 A3 ####?HEX$(PEEK(#

C970- 0F 20 20 20 20 3F 48 45 58 24 28 50 45 45 4B 28 A3 ####?HEX$(DEEK(#

A guide to the effect of the standard keyboard used with FUNCT or FUNCT + SHIFT
can be found in the Appendix on page 52.

25

You can of course amend and save to disc the current keyboard using KEYDEF, KEYUSE and
KEYSAVE; you can also amend the .KEY files directly on disc using NIBBLE. You can in this
way create entirely new keyboard filles to suit your own needs.

KEYDEF NE

Permits the definition of function keys. The argument is the function code, assigning to the
key(s) pressed the effect listed in the above translation tables (or in the case of codes 00 to 15
substitued with KEYUSE. After entering the command, press the key to which you wish to
assign the function. If you press just the key, the function is accessible by pressing FUNCT and
the key. If you press SHIFT and a key, the function is accessible by pressing FUNCT + SHIFT
and the key.

To recap, the function codes are:

- Codes 0 to 15 for user-definable commands (with KEYUSE)
- Codes 16 to 31 for pre-defined commands (see above)
- Codes 32 to 127 for the DOS keywords (see above and the Appendices)
- Codes 128 to 246 for the BASIC keywords (see above and in the Oric manual)
- Code 254 for FUNCT+DEL (delete keyboard buffer)
- Code 255 for FUNCT + RETURN (auto line numbering)

KEYDEF 0 assigns to the key you then press the command defined by KEYUSE 0,"xxxx"

KEYDEF #80 assigns to the key pressed the BASIC keyword END (#80 is the hex. code
of END). You could equally use KEYDEF 128.

KEYUSE NE, AE

Only works on the Atmos. It permits the definition of the 16 user commands (with one or more
commands each).

NE is the command code (0 to 15), AE is the command string (the maximum number of
characters is 16).

The string can include all ASCII characters except 0 (null) and characters above 127. It can
include CHR$(13) which simulates a RETURN.

KEYUSE 0, "PAPER 0:INK 7" + CHR$ (16) + CHR$ (13)

An example of setting FUNCT and the 1 key to list all the filenames with the extension ".COM"
is set out in the three steps that follow.

1 Enter KEYUSE 0, "DIR" + CHR$(34) + "*.COM" + CHR$(34) + CHR$(13)

2 Enter KEYDEF 0

3 Press key '1'

Now if you press the FUNCT key with the '1' key, the files will be listed to the screen.

26

KEYSAVE FN

Saves the current function key configuration on disc. Equivalent to SAVE FN, A#C800,
E#C9DD. To recall a saved configuration, simply load it.

° KEYSAVE automatically behaves like SAVEU in that a backup file is created if you save a
file to a disc having a file of the same name on it.

KEYSAVE "TEST.KEY"

VUSER

Displays the defined command strings for the 16 user commands. Control characters appear in
inverse video - e.g. M inverse for RETURN because CTRL-M is equal to RETURN. A space is
inserted before control codes.

° This does not show to which keys the user commands are allocated. This would be suitable
for an upgrade if it is required by users.

27

STRING COMMANDS

1 2INSTR AE , AE , NE

2 1Searches for the first occurrence of the string AE within the string AE , starting at the
character position specified in NE. The position is returned in the system variable IN.

If the string to be examined is empty or if the string sought is "" or is not present, IN contains
0. If the parameter entered in NE is 0 or greater than the length of the string to be examined
an "ILLEGAL QUANTITY ERROR" is returned. String variables may be used.

10 INSTR "NICE DAY", "DAY", 1
20 PRINT IN

 gives the result 6.

TKEN AV

Encodes (in program mode only) the string variable as a suite of BASIC and/or SEDORIC
instructions which can be executed by the use of STRUN. The variable must contain the string
to encode; after execution it contains the encoded string.

The string to encode can contain up to 78 characters, the resultant string up to 67 bytes (BASIC
tokens count as 1 byte). The command is not usable in direct mode.

10 TKEN "PING"

UNTKEN AV

The inverse of TKEN. Decodes the encoded string into its original form.

28

STRUN AV

Executes, in program mode only, a string encoded with TKEN as if it were a BASIC line. The
maximum length is 67 bytes. It allows the easy execution of formulae, or the creation of a
command file.

All BASIC and DOS keywords except those normally not usable in direct mode may be included.
Any string to be executed several times only needs to be tokenised once since it is stored in the
nominated string variable.

10 A$= "PING"
20 TKEN A$: STRUN A$ (Execute the PING)
30 INPUT "EXPRESSION"; A$
40 A$= "EP = "+A$
50 TKEN A$: STRUN A$
60 PRINT EP

° It is possible to execute a command normally restricted to direct mode within a program
by using this command - e.g. 10 STRUN "B-" to change the active drive. The only constraint is
that if the string contains a BASIC keyword it must be tokenised with TKEN first. It is also
possible to create an array of pre-defined commands, and to combine elements according to the
context of the program. The possibilities are endless!

° A neat use of this command is to change drives within a BASIC program, a command
otherwise lacking in SEDORIC:

100 PRINT "Drive (A/B/C/D)?": GETDR$
200 IF DR$<"A" OR DR$>"D" THEN PING: GOTO 100
300 DR$=DR$+"-": TKEN DR$: STRUN DR$: RETURN

29

ERROR HANDLING ROUTINES

ERR SET or ERR OFF

So that the programmer can handle errors generated by the DOS the ERR SET command
prevents the interruption of a program by a DOS error. Note that errors generated by the BASIC
interpreter cannot be handled by this method.

ERR SET is used in conjunction with the command ERR GOTO. When the DOS detects an
error, the program continues to operate from the line specified by ERR GOTO, or will stop if the
program doesn't provide such an error routine. An ERR SET must appear in the program before
an ERR GOTO.

The variable EN at #4FD will contain the error number, and EL at #4FE-#4FF the number of
the line causing the error. In this way, for example, the programmer can trap DOS errors
generated by having the incorrect disc in the drive when looking for a specified data file. The
error number 01 would provide evidence of this so the programmer could use an IF statement
to print instructions to insert the correct disc. If an error is generated in direct mode, the line
number will be given as 65535.

ERR GOTO NE

Specifies the line number where DOS errors are handled provided an ERR SET has been
executed.
N.B. - an ERR SET nullifies any previous ERR GOTO.

1000 ERR GOTO 10000
...
10000 PRINT "Enter a numeric variable !"
10010 GOTO 990

RESUME (NEXT)

Restarts execution where it was interrupted (RESUME) or at the following command (RESUME
NEXT). This command is used within the program section that handles the error condition.

ERROR NE

Generates an error condition with the specified number held at location #4FD. This allows the
centralisation of errors, including user-created ones. NE may range from 50 to 255. Numbers
1 to 49 are reserved for DOS errors.

If DOS error handling is enabled (by ERR OFF) then a 'USER XXX ERROR' message is
generated, where XXX is the error number specified within the program.

ERROR 50

30

TEXT FORMATTING

LINPUT (@NE, NE,) (AE,) NE; AV (, E) (, S) (, C) (, J) (, K)
LINPUT (@X, Y,) (Character,) Length; AV...

An instruction to format text input - not numeric variables. It allows entry of text of the length
specified, which is assigned to the string variable AV. This is a very powerful instruction which
needs to be used progressively to realise its full potential. The simplest instruction is the form
LINPUT (length); AV, it is an INPUT where you can select the number of characters to be
entered.

The command creates a window on screen, which utilises a full page editor within the window.
When inputting text using LINPUT only certain control characters are valid: CTRL-D, CTRL-T,
CTRL-N, CTRL-Z (equivalent to ESC for attributes) and DEL. The cursor is automatically
enabled.

The maximum window length is 255 characters. Input can be terminated by ESC or RETURN.
The system variable OM (Out Mode) varies with the method of exit from the window:

0 = exit by RETURN 1 = ESC
 2 = cursor left 3 = cursor right
 4 = cursor down 5 = cursor up
 6 = automatic exit (window full)

, E prevents erasure of the window before any text has been entered
, S prohibits exit by use of the cursor arrows
, C allows exit from the window when it is full without having to press RETURN. Without

this option the cursor returns to the start of the window
, K justifies the text in the screen window by inserting spaces, the variable does not contain

the spaces
, J the same as for , K except the variable is justified, but the screen unaffected.

The first character of AE fills the window if overwriting is required. If an empty string is set, the
character is "." by default.

@ X, Y permits you to fix the position of the window on screen, as for PLOT.

LINPUT 20; A$, S
LINPUT "-", 100; A$
LINPUT @10, 3, 100; A$, C, J
LINPUT @10, 3, "-", 2; A$

31

CREATEW (FN)

Creates a screen area of 25 lines by 40 characters, starting at screen line two, for use by the
WINDOW command. The command is not usable in Hires. A full screen editor is used within
the screen area. CTRL-S saves the screen page, use CTRL-C to leave it.

Data fields are defined by CTRL-W, appearing as a square on the screen. The number of fields
is unlimited, the field length is limited to 255 characters. The screen area can be thought of as
a proforma for the entry of data into programs.

CREATEW, "TEST"

WINDOW (FN)

Enables the loading of such text screen areas - not usable in Hires. If no filename is used (as
saved by CREATEW) then the current screen area is loaded, if possible.

Before using this command, you must correctly dimension the array WI$ with the number of
fields in the screen area. If not, the default of 11 fields is used.

WINDOW displays the screen area to the screen along with the data fields and their values
found in the array WI$. The data is correctly justified on screen.

During data entry, the user can only write in the fields, or move from one field to another with
the cursor arrows or RETURN. Most control characters are filtered out.

On typing CTRL-C all the fields are read and loaded in the WI$ order (right to left, top to
bottom). The number of fields allowed are unlimited, but WI$ must be dimensioned correctly.

A field can be 255 characters long. If the Oric is in 40-column mode the fields lose their 38-
column mode formatting. This problem also occurs on the Oric-1.

WINDOW "TEST" calls the TEST screen area into the buffer and displays it
WINDOW displays the screen area currently in the buffer

32

FORMATTED SCREEN/PRINTING

USING NE, AE (, AV)

This command formats numbers printed to the screen; the number is the numeric variable NE,
its format is defined in the string variable AE. If an alphanumeric variable is specified (,AV), the
number formatted is not displayed, but the variable specified is affected accordingly.

The formats are given below; all other characters are unaffected:

 + displays the sign of the number, + or -
 - displays a space or the - sign if a negative number
 8 displays the exponent in scientific notation (e.g. +12)
 &a is the character to replace 0's in front of a whole number, the default is spaces
 %x is from 0 to 9, displays x characters of the whole number
 #x is from 0 to 9, displays x characters of the decimal part
 !x is from 0 to 9, rounds to x characters of the whole part
 @x is from 0 to 9, rounds to x characters of the decimal part.

10 A=1000/6 : USING A, "&0Number:%9.#4 E8"
displays Number: 000000166.6666 E+00

30 USING A, "@2+%5. Pounds and #2 pence."
displays 1666 Pounds and 67 pence

40 USING PI, "&*%2 #5", A$: PRINT A$
displays *3.14159

LUSING NE, AE (, AV)

As for USING, but outputs to the printer.
LUSING 12, "+-8#3"

WIDTH (NE) or WIDTH LPRINT (NE)

Sets the usable screen width (WIDTH) or printer width. NE is the number of characters per line
to be printed before a carriage return (CR) and line feed (LF) are automatically generated.

On the Oric-1 WIDTH and WIDTH LPRINT each control both screen and printer and set them
both to the value entered.

WIDTH alone resets the default values of 40 screen/80 printer on the Atmos, and 53 screen/93
printer on the Oric-1.

WIDTH 20 gives a display 20 columns wide
WIDTH LPRINT 132 gives a printout 132 columns wide

33

PRINTER OUTPUT

OUT NE

Sends an ASCII code to the printer and is the equivalent of LPRINT CHR$(NE). It is
particularly useful for avoiding the bugs in the Oric-1 LPRINT command.

OUT 27: OUT 33: OUT 30 equals LPRINT CHR$(27);"!";CHR$(30)

PR SET or PR OFF

Switches the printer in or out. After a PRSET all screen output is directed to the printer.

° PRSET treats all PRINTs as LPRINTs. PROFF does not treat LPRINTs as PRINTs!

0 The printer must be disabled before executing a STOP or END in an Atmos program, or
using CTRL-C. Otherwise a bug in the Atmos ROM sets the screen width incorrectly. A WIDTH
command could be used to correct the fault. However this bug can be put to good use if you
require double line spacing on your screen.

0 Because the PR routine in SEDORIC looks by itself for a SET or an OFF, and does not use
the standard command interpreter, a bug has crept in. Do not use a space character after SET
or OFF, or a syntax error is generated. Equally you must follow a PR SET or PR OFF inside an
INIST string with a colon.

34

GRAPHICS INSTRUCTIONS

These commands are constructed around the variable AN, representing the angle to be used.
AN is expressed in degrees anticlockwise from EAST. Clockwise values may be expressed as a
negative number of degrees.

LINE NE, FB code

Draw NE points in the current direction, i.e. the current value of AN. FB code is as usual,
 FB=0 for current paper colour
 FB=1 for current ink colour
 FB=2 for inverse.

10 HIRES
20 CURSET 0,0
30 AN=-45
40 LINE 100,1

draws a line from the top left hand corner of the screen 100 pixels long and at an angle of 45
degrees below the top of the screen (i.e. 45 degrees below (minus) EAST):

° This command and BOX use #BFE0-#BFFF in RAM

35

1 2BOX NE , NE , FB code

Draws a rectangle, with the current cursor position forming the top left corner. It will be angled
to the current value of AN.

1 2NE and NE are the sides of the rectangle in pixels, across then down. FB code is as for LINE.

10 HIRES: PAPER 7: INK 0
20 CURSET 40, 40, 0: AN=30
30 BOX 50, 120, 1
40 CURSET 40, 20, 0: AN=-90
50 LINE 160, 1
60 CURSET 40, 40, 0: AN=0
70 LINE 150, 1

draws the following:

LCUR

Returns the horizontal and vertical coordinates of the cursor in Text mode in the variables CX
and CY.

10 CLS: PRINT: PRINT "test LCUR";
20 LCUR
30 PRINT CX, CY
gives: 12 2

HCUR

As above for the Hires screen.

36

USER COMMANDS

USER x , DEF address (, O)

1 2 3 4USER x (, A NE) (, X NE) (, Y NE) (, P NE)

x may be NV, a numeric variable.

Allows the call of assembly language sub-routines, with the ability to pass parameters.
x or NV is the number of the user routine and must be in the range 0 to 3.

USER x , DEF (the comma is essential) is used to define the routine execution address. If the
,O option is specified, the routine will execute in RAM overlay.

USER x then executes the routine at the specified address. The 6502 registers are loaded with
the specified parameters (which are optional).

On returning from the routine, the variables RA, RX, RY and RP contain the values of the
registers A, X, Y and P.

USER 2, DEF #CCB0
USER 1, DEF #4000,0
USER 2, X12, Y20
USER A, A100, X200, P#C1

] (right bracket)

As for the "!" in non-disc systems, used to call machine code routines from BASIC. DOKE
addresses #2F9-#2FA with the call address

N.B. After a QUIT, the exclamation mark is obligatory to execute DOS commands.

37

OTHER COMMANDS

QUIT

Resets the pointers used by the DOS, resetting the IRQ and NMI vectors. Disables the FUNCT
key, and makes the use of "!" obligatory for DOS commands.

The instruction is necessary before running any program that uses Page 4 of memory or
modifies the IRQ/NMI vectors itself.

° This command provokes the question of how to return to SEDORIC after a QUIT? There
is no command available other than a rather brutal !RESET, which doesn't always work. It
would be interesting to program such a command - RETRIEVE perhaps?

RESTORE (No. of line)

Places the DATA pointer at the start of the program or at the specified line (which does not have
to exist). Only !RESTORE is treated by RENUM.

RESTORE (original BASIC command)
!RESTORE 100 (to differentiate the DOS command from the BASIC one)

start end target addressMOVE AE , AE , AE

Moves a block of memory. The inclusive start address and end address+1, and target start
address must be specified. Addresses above #C000 are in RAM overlay where the DOS is
situated. Beware of corrupting this area.

MOVE #A000, #BF40, #1000 saves the HIRES screen at #1000.
MOVE #1000, #2F40, #A000 recalls it

° While you should beware of corrupting RAM overlay, the possibility does mean that you
can alter it! This has endless possibilities for programmers.

38

RESET

A command having the same effect as the button on the disc drive.

OLD

Recovers a BASIC program lost by a BOOT or a NEW. Clears all variables.

Sometimes when a program has completely disappeared, OLD will cause the Oric to hang up.
Simply press the reset button.

Note that if variables have been affected between the NEW and the OLD, the program is not
recoverable.

RANDOM (NE)

Initialises the random number generator. If no argument is specified, the initialisation is left
to chance (using the VIA timers). If one is specified, that number will always produce the same
sequence.

RANDOM 15

SWAP Variable, Variable

Exchanges the contents of the specified variables (of the same type).

SWAP A, B

39

DATA FILES

SEDORIC DOS is capable of both sequential and random access to data files on disc. Each file
has a logical number (LN) assigned to it to simplify the command syntax. The number may be
from 0 to 63. It is necessary to open a file before accessing it, i.e. to allocate to it a logical
number and associate it with a filename on disc. The DOS then loads all necessary information
and creates the file on disc if it does not already exist. You can then use the file and access the
data. On finishing with the file it is essential that it is closed.

N.B. if a 'WRITE-PROTECTED' or 'DISC FULL' error appears, it is advisable to close and then
re-open the file for further access to ensure compatibility between disc and memory. Also all
data files must be closed before a DIM instruction is used.

0 The system of file generation uses a 'pseudo-array' placed right at the start of the BASIC
array table area; it is an integer array, variable name FI. You must not use this variable name
yourself or the system will crash on the first OPEN. Furthermore, after an OPEN and until the
last CLOSE use of the BASIC command DIM is absolutely prohibited. If executed it overwrites
the pseudo-array FI.

SEQUENTIAL FILES

In sequential access files the data has to be read in the order in which it was written. Sequential
operation is as if a pointer was moving along the file, advancing item by item. Reading or
writing of data is carried out at the current pointer position. To enhance use of sequential files,
instructions are provided to control the pointer position.
When writing to a file, data is immediately written to disc to minimise the risk of loss or
corruption.

OPEN S, FN, LN

Opens a sequential file, reserves a memory buffer, and sets the pointer to start of file.
OPEN S, "DISCS", 2 opens a file called "Discs" with the logical number 2.
If the file does not exist on disc, it will be created. Do not use the BASIC command DIM whilst
a file is open.

CLOSE (LN, LN, ...)

Frees the buffer reserved by OPEN and closes any open files. Do not use without parameters
in the middle of a program.

CLOSE 34, 1 closes files 1 and 34
CLOSE closes all open files

40

PUT LN, list of variables

Writes the variable contents to a file.

PUT 2, A$, "TEST", 12, A% writes in file 2 the variables A$, TEST, 12 and the numeric
variable A%

File size is only constrained by the free disc space. When writing to the middle of a file, the
variable must be of the same type as that already written to the pointer position. With string
variables, a string shorter than the previously-written string is packed with spaces to the right;
a longer string is truncated from the right to the length of the previously-written string.

TAKE LN, list of variables

Reads from file LN the specified variables. The variables must be of the same type as those
stored on the disc. If the end of file is reached during a TAKE operation an error message is
generated.

APPEND LN

Places the file pointer at the end of the specified open sequential file.

APPEND 2 places the pointer at the end of file no. 2

REWIND LN

Places the file pointer at the start of the specified open sequential file.

REWIND 3

41

JUMP LN, number of data items

Moves the pointer of an open sequential file the number of items specified. If the end of file is
reached, acts as APPEND.

JUMP 2, 200
JUMP 12, A*12

BUILD LN

Enables you to build a sequential file by keyboard entry. The characters are entered on file as
strings of 200 characters. After each 200 characters the string is saved to disc automatically.
Exit with CTRL-C, when the characters input to the current 200 character string are saved to
disc.

Code ASCII 13 (CR or RETURN) is automatically replaced by the code 13/10 (i.e. a line feed is
added) to improve legibility when read with the TYPE command. All characters are faithfully
reproduced on file, which can be useful for animation on the text screen.

BUILD 2

° Note that the first thing a BUILD command does is to execute an APPEND. Thus if the file
is not empty, what you type will be added to the end of the file, even if you execute a REWIND
beforehand. This can produce real oddities, so the moral is - use a new file each time with
BUILD, unless you really want to append.

TYPE LN

Allows you to display the contents of an open sequential file, starting at the current position of
the file pointer. Pressing a key will stop the listing, use SPACE to restart, and CTRL-C to exit.

This command can be used with BUILD for animated sequences.

TYPE 2

42

LTYPE LN

As for TYPE, but on the printer.
LTYPE 2

&(LN)

Returns -1 (true) if at the end of file, otherwise 0 (false).

N.B. the brackets are part of the command syntax, not an option.

1000 A=&(2)
1010 PRINT A

&(-LN)

Returns the type of the next data item to read.

The code returned is:
0 for a numeric variable
128 for a string variable
-1 for end of file.

A=&(-2)

43

RANDOM ACCESS FILES

Random access is very different from sequential access in that the data is organised within the
FILE into RECORDS. Each record contains all the relevant information on the item recorded,
and each has its own identity so that it can rapidly be accessed on disc.

Each record contains all relevant information grouped in FIELDS.

The record is the entity that is transferred from the disc to memory and vice-versa. To facilitate
file operations, the commands work on a memory buffer holding the whole of the relevant
record.

There are two types of instructions, those concerned with transfer between disc and buffer, and
those with transfer of variables to and from the buffer.

OPEN R, FN, LN (, record length, number of records reserved)

Opens a file. It is essential that you specify the record length and number of records when first
opening a file, but not necessary thereafter.

If the number of records exceeds the initial setting, extra space is automatically created for extra
records.

The space occupied by a random access file is indicated in the number of sectors used on disc
(i.e. number of records x record length / 256). A file of 300 records of 50 characters each would
occupy about 60 sectors.

OPEN R, "DIRECT", 2, 183, 100

opens a file called "Direct", logical number 2, with each record a maximum 183 characters, and
with space for 100 records reserved.

0 DIM must never be used after an OPEN until a CLOSE has been executed.

CLOSE (LN, LN ...)

Closes the file numbered LN (or all files) and frees the buffer. You are recommended to use LN
numbers for the greatest security.

CLOSE 1

44

TRANSFERS BETWEEN BUFFER AND DISC

TAKE LN, Record no.

Loads the specified record from disc into the buffer.

TAKE 2, 120 (i.e. No. 120 of logical file number 2)
TAKE F, JP*12

If the record does not exist a 'BAD RECORD NUMBER' error will be generated.

TAKE 2, 120
TAKE F, JP*12

PUT LN, Record no.

Transfers the specified record from the buffer to the file on disc.

If the record does not exist, it will be created. It is preferable to create sufficient records to start
with, as adding an additional record to the file on disc is a comparatively lengthy process.

PUT 2, 120

45

WORKING ON THE BUFFER

To facilitate the classification of data, the record can be further divided into fields, enabling the
place within the record where the data will be held to be defined. The fields are rather like
variables; you may give them a value and read them as with variables. However be warned, they
are not variables!

The conventions for field names (FLN) are :

- 5 significant characters
 - can contain a pseudo array by indexing the field
 - the field name with index 0 is equivalent to the name without an index, i.e.

 if a field is called NAME, NAME(0) is the same as NAME
 - must not include a BASIC keyword or start with a DOS keyword
 - the total number of fields is only limited by the available memory.

E.g.: NAME
INDEX (1)
ADDRESS1 (0) equals ADDRE (0), only the first five characters are significant.

FIELD LN, FLN TO type (,....)

Defines fields within the each record of the file. The type of field is defined by:

 $NE for an alphanumeric field, NE defines its length
 % for an integer field
 ! for a numerical field

 letter O for a field of one byte

If the command ends with a comma, the next definition starts at the current position. The
length of a field must not exceed the total length of the record.

An integer field is 2 bytes long, a numerical 5 bytes, and an alphanumeric the length specified.
To that is added 2 bytes for internal working space.

FIELD 2, NAME TO $8, SURNAME TO $12, AGETO %, SALARY TO !, SEX

opens in file number 2 a field for the name of 8 characters, one of 12 characters for the surname,
an integer field for the age, a numeric field for salary, and a single byte field for the sex.

Total length of record: 2+8 + 2+12 + 2+2 + 2+5 + 2+1 = 38 bytes per record

0 Note the bug and solution dealt with on page 58.

46

TRANSFERS BETWEEN FIELDS AND VARIABLES

RSET FLN < Expression

Writes the given value to a field - both must be of the same type.
String variables will be justified to the right, and stripped at the left if the string is too long for
the field, any gap to the left is filled with spaces

RSET NAME(2) < "EUREKA" (NAME(2) is an alphanumeric field)
RSET TEST < 123 (TEST is an integer field)

The '<' is part of the syntax of this command. If the field STRING has five characters:

RSET STRING < "123456" stores "23456"
RSET STRING < "TOTO" stores " TOTO"

LSET FLN < Expression (,.....)

Identical to RSET for numeric and integer fields. String variables are justified to the left and
stripped at the right if too long, or completed at the right by spaces if too short.

LSET TEST < 2000*AS

If the field STRING has five characters: LSET STRING < "TOTO" stores "TOTO "
LSET STRING < "123456" stores "12345"

FLN > Variable

Read field of name FLN and put into the specified variable, which must be of the same type.
NAME(1) > A$
TEST > A
PROPERTY > A is invalid because PR is a DOS keyword.

0 This command has no in-built security. It should not be used with filetype ,S, yet this is not
tested. There is no test as to whether a ,R type file is open, nor whether a record has been loaded
with TAKE. The validity of the data loaded is not checked. The moral is - use with care!

& (LN)

Display the number of records in file number LN & (12)

° This command cannot be used with 'D' type files. Used with 'R' type files, it returns the
number of records with &(+no.), the length of record with &(-no.).

47

PUT LN, Track, Sector (, Drive)

DISC ACCESS

There is a special kind of file which allows you to modify the disc, sector by sector, directly from
BASIC. It enables the experienced programmer to create a filing system particular to the needs
of the application. The idea is similar to the instructions for working on the buffer files, but the
fields are here defined without the 2 bytes working space.

Instead of the record being in the buffer, the buffer now contains the contents of the disc sector.
The buffer is 256 bytes long.

To ease things, instructions are included to search for empty sectors on the disc.

OPEN D, LN (,Drive)

Reserves the buffer of 256 bytes and opens the file FLN. Note that the space between OPEN and
the D is obligatory to avoid the BASIC keyword END.

OPEN D, 1
OPEN D, 1, B

CLOSE (LN (, LN.....))

Closes the file(s) specified and frees the buffer.

TAKE LN, Track, Sector (,

Reads the specified sector into the buffer. No test is carried out to see if the specified sector
exists. If it does not, a 'DISC I/O (ERROR number 04)' message is generated.

TAKE 2, 14, 3, A
TAKE 0, 20, 1

As TAKE, but used to write, not read the sector.
For a double-sided drive, add 128 to the track number to access side 2 of the disc:

PUT 1, 131, 2 writes the buffer in sector 2 of track 3 on Side B

0 Be aware that for this use of the PUT command, there is no verification of the validity of
the track and sector numbers entered.

48

SECTOR RESERVATION

It is possible to search for free sectors on the disc, as well as to free certain sectors. All this
information is stored in special sectors (Track 20, Sectors 2 & 3) called BITMAP. To reserve
a sector it is necessary to read BITMAP, determine the free the sector using CRESEC, and
rewrite BITMAP.

PMAP Drive

Reads the BITMAP into memory. PMAP
PMAP A

SMAP Drive

Writes to disc the BITMAP in memory.

Between a PMAP and an SMAP you must not do a LOAD, SAVE or DIR, or make direct or
sequential access to the disc, otherwise BITMAP may be corrupted.

SMAP A

CRESEC

Returns in the system variables FP and FS the track and sector address of a free sector. If the
disc is full, it says so.

It is only usable after a PMAP. and automatically decrements the number of free sectors.

track sectorFRSEC NE , NE

Frees the specified sector and increments the number of free sectors. If already free, it has no
effect.

Only usable after a PMAP.
FRSEC 20, 10

49

INDEX OF DOS KEYWORDS

Command Page Command Page Command Page

ACCENT 20 INSTR 27 RESUME 29
APPEND 40 JUMP 41 REWIND 40
AZERTY 19 KEY 19 RSET 46
BACKUP 12 KEYDEF 25 SAVE 8
BOX 35 KEYIF 19 SAVEM 8
BUILD 41 KEYSAVE 26 SAVEO 8
CHANGE 17 KEYUSE 25 SAVEU 8
CHKSUM 5 LCUR 35 SEARCH 6
CLOSE 39-43-47 LDIR 6 SEEK 16
COPY 12 LINE 34 SMAP 48
CREATEW 31 LINPUT 30 STATUS 10
CRESEC 48 LOAD 7 STRUN 28
DEL 9 LSET 46 SWAP 38
DELBAK 9 LTYPE 42 SYS 13
DELETE 18 LUSING 32 SYSTEM 14
DESTROY 9 MERGE 16 TAKE 40-44-47
DIR 5 MOVE 37 TKEN 27
DKEY 14 NUM 18 TRACK 14
DNAME 13 OLD 38 TYPE 41
DNUM 14 OPEN 39-43-47 UNPROT 10
DSYS 13 OUT 33 UNTKEN 27
DTRACK 14 PMAP 48 USER 36
ERR 29 PR 33 USING 32
ERRGOTO 29 PROT 10 VIEWHIRES 5
ERROR 29 PUT 40-44-47 VUSER 26
ESAVE 8 QUIT 37 WIDTH 32
EXT 4 QWERTY 19 WINDOW 31
FIELD 45 RANDOM 38] 36
FRSEC 48 REN 9 > 46
HCUR 35 RENUM 15 & 42-46
INIST 13 RESET 38 < 46
INIT 11 RESTORE 37

50

APPENDIX - SEDORIC DOS Keyword Addresses and Codes

Command Code Entry Block Command Code Entry Block
 Address Address

ACCENT 35 EB91 LUSING 80 F036
APPEND 33 FE07 MERGE 88 F13C 3
AZERTY 34 EBDE MOVE 87 F136 1
BACKUP 37 F151 2 NUM 89 EB25
BOX 36 F0DE OLD 91 E0AF
BUILD 38 FEE0 OPEN 92 FA50
CHANGE 39 F148 3 OUT 90 E71F
CLOSE 40 FB8D PMAP 96 F990
COPY 41 F157 4 PR 95 E7C0
CREATEW 42 DE4D PROT 94 7
CRESEC 43 F9BC PUT 93 F9CB
DEL 48 E446 QUIT 97 E7F5
DELBAK 47 E437 QWERTY 98 EBE1
DELETE 45 F142 1 RANDOM 105 E796
DESTROY 46 E444 REN 103 E537
DIR 49 E344 RENUM 102 F14E 1
DKEY 53 F124 5 ESET 100 E7B8
DNAME 52 F145 5 RESTORE 106 E7D9
DNUM 51 F12A 5 RESUME 99 E9BB
DSYS 54 F127 5 REWIND 101 FABB
DTRACK 55 F139 5 RSET 100 FC75
ERR 60 E97F SAVE 117 DD50
ERRGOTO 57 E999 SAVEM 115 DD4A
ERROR 59 E9B0 SAVEO 116 DD53
ESAVE 61 DDE0 SAVEU 114 DD4D
EXT 62 7 SEARCH 118 E5FC
FIELD 63 FBBF SEEK 109 F154 3
FRSEC 64 F99C SMAP 120 F996
HCUR 65 EBF5 STATUS 113 7
INIST 68 F12D STRUN 111 E853
INIT 66 F169 6 SWAP 108 EA3B
INSTR 67 EC2E SYS 119 F159 5
JUMP 69 FE12 SYSTEM 112 7
KEY 76 E70B TAKE 122 F8DF
KEYDEF 73 D9FD TKEN 121 E89D
KEYIF 71 DA20 TRACK 124 F130 5
KEYSAVE 75 DDCD TYPE 123 FE98
KEYUSE 72 D9B0 UNPROT 7
LCUR 86 EBEC UNTKEN 126 E8E1
LDIR 84 E7D0 USER 125 EA7F
LINE 77 F079 USING 127 EE99
LINPUT 82 EC94 VUSER 129 F121 5
LOAD 83 DFF7 WIDTH 130 E740
LSET 78 FC73 WINDOW 131 F21C
LTYPE 85 FE95] EC04

The block reference refers to the external blocks of the DOS that have to be loaded from disc
when the command is used for the first time.
The entry point addresses (in hexadecimal notation) can be used in conjunction with the MOVE
command to examine the DOS and customise it if desired.

51

APPENDIX - Error Messages

01 - FILE NOT FOUND
The file has not been found on the disc (the file may not exist, the filename may be misspelt or
a wildcard misplaced).

02 - DRIVE NOT IN LINE
A specified drive is not connected. Check the drive number. To connect it use the SYS command.

03 - INVALID FILE NAME
The filename contains invalid characters or is too long (9 characters maximum).

04 - DISC I/O
The disc is corrupted. The DOS displays the sector and track where the error was detected to
assist experienced users to recover the disc (e.g. using the NIBBLE disc sector editor). Note: The
sector number is not significant, nor is it displayed, if an error occurs during formatting of a
disc.

05 - WRITE PROTECTED
Indicates an attempt to write to a disc which has the write-protect tab set.

06 - WILDCARD(S) NOT ALLOWED
A wildcard has been used in a filename in connection with a command that does not accept
wildcards (e.g. LOAD).

07 - FILE ALREADY EXISTS
An attempt has been made to save a file on a disc which already contains a file of that name.

08 - DISC FULL
The file is too long to be saved in the available disc space.

09 - ILLEGAL QUANTITY
A parameter has been specified that is too large or too small.

10 - SYNTAX ERROR
A mistake has been made in typing an instruction.

11 - UNKNOWN FORMAT
An attempt has been made to use a disc that has not been formatted by the current version of
SEDORIC DOS.

12 - TYPE MISMATCH ERROR
An attempt has been made to match one type of variable or field against another, such as a
numeric against a string variable.

13 - FILE TYPE MISMATCH
A file of one type has been specified with a name associated with a file of another type (e.g.
attempting to load data with the LOAD command).

14 - FILE NOT OPEN
An attempt has been made to access a file that has not been opened.

15 - FILE ALREADY OPEN
An attempt has been made to assign a logical number to a file when that number has already
been assigned to another file.

52

16 - END OF FILE
An attempt has been made to read data when the end of the file has been reached.

17 - BAD RECORD NUMBER
The record number entered exceeds the capacity set for the file.

18 - FIELD OVERFLOW
The field definitions have produced an overall length that is greater than the length

specified for the record.

19 - STRING TOO LONG
The string entered is too long (see TKEN, etc.).

20 - UNKNOWN FIELD NAME
An attempt has been made to read from or write to a field not previously defined with the

FIELD command.

APPENDIX - Standard Function Key Usage

Code Definition Code Definiton

000-015 User definable
000 (space character) 016 HEX$(
001 DOKE#2F5,# 017 CALL#
002 DOKE#2F5,#467 + RETURN 018 TEXT + RETURN
003 DOKE#2F9,# 019 FORI=1TO
004 DOKE#2F9,#D070 + RETURN 020 LEFT$(
005 DOKE#2FC,# 021 MID$
006 DOKE#2FC,#461 + RETURN 022 RIGHT$
007 PAPER0:INK7 + RETURN 023 STR$(
008 CALL#F8D0 + RETURN 024 UNPROT + RETURN
009 ê 025 ©
010 ?HEX$(PEEK(# 026 USING
011 ?HEX$(DEEK(# 027 VIEWHIRES
012 PEEK(# 028 VUSER + RETURN
013 DEEK(# 029 WIDTH
014 POKE# 030 WINDOW
015 DOKE# 031 !RESTORE
032 to 127 DOS keywords (see page 23)
128 to 253 BASIC keywords (see page 23)
254 DEL
255 Generate line numbers.

53

APPENDIX - System Variables

These variables are used by the DOS in conjunction with the relevant command or error
condition. They can be read from BASIC programs, but should not be assigned new values
from within the program if the associated DOS command is to be used, except for the AN
variable.

Used by SEARCH:

 EF (Existing File) EF=1 if the file exists, 0 if it doesn't.

Used by LOAD or direct loading:

 ST (STart address) contains the start address of program
 ED (EnD address) contains the end address
 FT (File Type) contains the program type
 EX (EXecution address) of the program.

Note that these variables will be cleared if a BASIC program is allowed to run on loading.
they may also be corrupted if a file is loaded into the area of memory occupied by the
variables. To preserve them, use the ,V option which will only load in the status byte and
not the whole file.

Used by SEEK:

 SK (SeeK) contains the number of string occurrences sought.

Used by INSTR:

 IN (INstring) contains the sub-string position in the string

Used by the error handling routines:

 EN (Error Number) displays the DOS error number
 EL (Line number) displays the line where the error is.

100 ERRGOTO 1000
.....
1000 PRINT "Error"; EN, "in line"; EL

Used by LINPUT:

 OM (Out Mode) returns the mode of exit from entering text into the window buffer.

Used by WINDOW:

WI$ is an array containing the number of fields used within the specified window. Its
default is 11 as in BASIC.

Used by LINE and BOX:

AN (ANgle) contains the angle in degrees used in the commands LINE or BOX. Default
is 0 degrees. This must be written to from a BASIC program.

54

Used by HCUR and LCUR:

 CX contains X coordinate of text or graphic cursor
 CY contains Y coordinate of cursor.

Used by USER:

 RA (Register Accumulator)
 contains the value of the A register of the 6502
 RX (X Register)
 contains the value of the X register
 RY (Y Register)
 contains the value of the Y register
 RP (Processor status Register)
 contains the value of the Status register

Used by CRESEC:

 FP (Free Piste [Track])
 contains the track number of the freed sector
 FS (Free Sector)
 contains the sector number.

Used by Data Files:

FI is a pseudo-array created when a data file is opened. It is stored at the start of BASIC
arrays, and is overwritten if a DIM command is used while a file is open.

APPENDIX - Disc Structure

The first 94 sectors of a Master disc (from Sector 1 of Track 0) are occupied by the boot
routines and then the DOS.

The sectors identified below have a fixed position and are reserved at the time of the disc
initialisation.

 Track Sector Use

 20 01 Disc name
 20 02 Bit map
 20 03 Bit map
 20 04 Directory 1
 20 07 Directory 2
 20 10 Directory 3
 20 13 Directory 4
 20 16 Directory 5

The remaining sectors are free for the storage of files or data.

55

APPENDIX - File Status Byte Coding

The status byte of a file is binary coded and the significance of each bit is given below.
The byte follows the standard bit format, i.e. b7 to b0. The bit is active if it is set to a '1' and
inactive if it equals '0'.

b0 : automatic execution
b1 : unused
b2 : unused
b3 : direct access
b4 : sequential access
b5 : window (note - b6 = 1 also)
b6 : data block
b7 : BASIC file

APPENDIX - Keyboard Codes for KEYIF Instruction

Key Code Key Code Key Code

 1 #A8 2 #B2 3 #B8
 4 #9A 5 #90 6 #8A
 7 #80 8 #87 9 #8B
 0 #97 - #9B = #BF
 \ #B3 ESC #A9 Q #B1
 W #BE E #9E R #91
 T #89 Y #86 U #85
 I #8D O #95 P #9D
 [#BD] #B5 DEL #AD
 CTRL #A2 A #AE S #B6
 D #B9 F #99 G #96
 H #8E J #81 K #83
 L #8F ; #93 " #BB
 RETURN #AF SHIFT L #A4 Z #AA
 X #B0 C #BA V #98
 B #92 N #88 M #82
 , #8C . #94 / #9F
 SHIFT R #A7 6 #AC 9 #B4
 SPACE #84 8 #9C 7 #BC
 FUNCT #A5

APPENDIX - Switching between RAM and ROM

The DOS is contained in RAM overlay, which 'shadows' the BASIC ROM.

When in ROM, JSR #04F2 takes you to RAM overlay. Another JSR #04F2 returns
control back to the ROM.

When using this routine there is a risk of 'hang-up' when returning to BASIC so care must
be taken. Switching between ROM and RAM overlay does not affect any of the 6502
registers.

56

APPENDIX - Utility Files on SEDORIC Master Disc

The SEDORIC master disc contains several programs and utilities.

CONVERT

Easily transfers your files created under ORIC DOS format to SEDORIC. Load by typing
CONVERT. The program is menu-driven - move between choices with SPACE or cursor
arrows, and validate a highlighted choice with RETURN.

ESC returns you immediately to the menu, and ESC at the menu returns you to BASIC.
There are 4 menu options:

Selection of drives
Drive selection - enables you to select which drive will hold the old format disc and which
the new - they can of course both be the same drive, as with the COPY command.
Select the required drive with the SPACE BAR and press RETURN to toggle between the
source and target drives.
ESC to return to the menu.

Initialisation of target disc
Enables you to format and initialise the target disc, equivalent to the command INIT. A
slave disc is formatted. Since the track and sector format is read from memory the values
default to those read from the bootup DOS disc. Therefore double-sided formatting of discs
of 80 tracks is supported.

Selection of the DOS version
Always leave this on ORIC DOS - the others are French DOS systems.

Conversion of files
The heart of the utility. Insert the source disc in the relevant drive. Press the DEL key to
produce a catalogue of files on the source disc - only the first 80 (!) files are copiable.
To select files to transfer/convert, move the highlight bar with the cursor arrows to each
file that you wish to transfer in turn, and at each file press SPACE. A star will appear by
each file you select. When you have finished selecting files, press RETURN to start the file
conversion. If one drive is being used, the usual prompts for loading source and target
discs will appear. As each file is transferred a '+' replaces the '*'.
If an error occurs, press ESC to move to the next file, or any other key to retry the file that
produced the error.

Note: CONVERT will copy ORIC DOS data files across onto the target disc, but they will
not be converted for use by SEDORIC DOS.

GAMEINIT

To initialise a games disc containing 'SHORTSED' - a DOS of only three instructions,
!LOAD, !DIR and direct file loading (i.e. ! (name of file)), each with its usual syntax. This
disc will have only 17 sectors occupied by the DOS, as against 100 plus for a normal Master
disc.

The syntax is close to that of INIT, except that you put a colon after the command, e.g.
GAMEINIT:A,17,42. If no parameters are entered, the default values of 42 tracks, 17
sectors, drive A are used.

NOTE: GAMEINIT does not permit more than 1919 sectors on a double-sided disc.

57

ROMORIC1

This loads the V1.0 ROM into RAM overlay, giving you the Oric-1 ROM on an Atmos. Note
of course that you no longer have the DOS in memory, and any programs must be loaded
from/saved to cassette.

ROMATMOS

The identical facility to give the Oric-1 a V1.1 ROM in RAM overlay.

ADDRESS

This is an example of a direct access file. Type ADDRESS and press RETURN to run the
program. There are two associated files - ADDRESS.WIN and ADDRESS.DAT

ALPHA

ALPHA (RETURN) enables you to sort a disc's directory in alphabetical order. It allows a
disc to be sorted in any drive.

STAT

STAT enables you to produce statistics on the number of times instructions are used in a
BASIC program. Type STAT, J, then RUN 64000. The program only lists those commands
actually encountered.

VERSION

Gives you the version of SEDORIC you are using. It allows a disc to be inserted in any
drive.

SECTOR MAP

This utility displays the state of all sectors on the disc, whether they are (O)ccupied or free
(.). Output can be to the screen or printer. To run type SECTMAP and press RETURN.
Discs formatted to 80 tracks double-sided are supported.

58

 APPENDIX - Known bugs and limitations

Version 1.006:

1. The use of lower case letters in SEDORIC commands is risky - in a number of cases
parameters simply will not work in lower case (the most obvious is AUTO). It is
safer to stick to capital letters for DOS keywords and parameters.

2. SEDORIC overwrites the flag at #0E that CSAVE uses to indicate that an ,A
parameter has been entered. All such saves are executed from #501 whatever value
is entered with ,A.

3. KEYDEF is seriously bugged.

4. TAKE command - variables were corrupted.

5. LDIR does not filter out screen control codes.

6. FIELD command only operated on one random access file at a time.

7. Formatting a double-sided disc did not give the correct indication when displaying
the directory.

8. In formatting a double-sided 80-track disc, the number of sectors was limited by the
BITMAP to 1919. INIT was therefore limited to the following formats for 16 or 17
sectors per track: INIT A, 16, 59, D INIT B, 17, 56, D

9. Format failures can occur when using INIT or BACKUP for formatting.

10. All utilities were written in French.

APPENDIX - Developments and solutions

Version 1.007:

2. The only available solution for the CSAVE bug is to QUIT before using the command
with ,A ,E parameters.

4. The TAKE command has been fully corrected.

6. FIELD bug: When opening more than one random access file at once, include the
FIELD definition in a sub-routine and call it prior to accessing a
particular file.

7. Double-sided directory display bug: After the first format return to command level,
re-enter INIT, do not format, but complete the initialisation as required.

9. If a format failure occurs, there is no option but to run the command again.

10. All utilities are translated into English.

59

Version 2.0:

8. The restriction of the total number of sectors permissable (formerly 1919) has been
removed.

9. The directory indication for a double-sided disc is now correct following the first
format.

11. The SECTMAP, ALPHA and VERSION utilities on the master disc have been
updated.

12. The packaged game has been changed from M.A.R.C. to Krillys.

13. The master disc contains a file NIBFIX which will amend the disc sector editor
'NIBBLE' to work with the updated DOS.

14. Some other V1.0 machine code programs are incompatible with V2.0

Version 2.1:

15. Minor bug fixes, including some created by V2.0 in Bank 5 (the DNAME and INIST
commands).

Version 3.0:

1. The use of lower case letters in SEDORIC commands is now prohibited.

2. CSAVE works correctly.

3. KEYDEF works correctly and has been completed.

14. All machine code programs (V1.0 or V2.0) are compatible with V3.0

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63

