

Preface to the 1998 edition.

Hi, and welcome to the on-line version of this book, first published in 1984 by McGraw Hill. |
scanned thisin during Summer 1998, using an OCR tool, combined with gif images for the program
listing. | partially did this as a gift to the surviving Oric community, and also as an archiving exercise.
| was fairly proud of this book, somewhat displeased when it was published to find it in no bookstores
at al. Although it is hardly relevant today, it surely had some worth back when Oric was agoing
concern. Anyway, that’s all water under the bridge.

My scanning skills improved somewhat during the making of this book, so you will find the later
listings are sharper, bolder. In case you are interested, my trick was to use Paint shop pro: convert to
large colour mode, at full size; then use Erode filter, which blackens the text; optionally do a flood fill
of white; resize to about 340 across; use the sharpen more filter to highlight some of the edges; and
finally reduce colours to 8 to make the image more compact. The OCR software was Cunieform. The
old version | had of that wasterrible with # signs, but | upgraded the version, and the newer one
seemed to like them. There might be an odd escaped O - O problem.

Originally the book was written on aMicrotan and saved onto cassette tapes. Now, those tapes contain
music....

I’m hoping that much of the book remains useful to Oric users out there, emulated or real, the book has
been scanned in almost without change - afew grammatical changes, for instance the changing of
“data’ to singular - the proof reader at Mc Graw Hill was convinced that “ data” was a plural term [ok
technically it isthe plural of Datum, but no-onein their right mind uses this] So sentences like “The
dataisread” should be“The dataareread” - the latter sounds horrible, to my mind “data” is aword
that is always singular, like “grass’. So where I’ ve noticed this, | changed it back to how | originally
typed it! I’ve put all the listings in as images, thismeans | can’t introduce errors, since the listings
have all come indirectly from those original programs dumped out from arunning Oric. None of my
code was written using an assembler, just the in-line one from Oric Mon. | do apologise for this, it
seemed quite natural at thetime, | don’t think 1’ d have the patience now to work in this kind of manner,
without proper cross assemblers! | can’t vouch at thistime if the programs are all working.

A lot has happened in the 14 or so years since the book was written. Therise of the PC, the
commercialising of software, Windows, the rebirth of consoles. We ve seen computers go from
containing 16K of ram to typically 64 megs (4000 times), storage from 100K on floppy to 6 gigs on
hard drive (60,000 times), processor power going from lessthan 1 MHz at 8 bit to 400 Mhz at 32 bit.

Personally, | stayed in the gamesindustry for ailmost 10 years, doing conversions, and to be frank
struggling towards the end to make aliving out of it. Now, I’'m not doing games, but working with
new technology, associated with CDs, the Internet, video, and audio. | remain at heart an assembler
man, but I’m learning C++ and windows, to keep up with the world.

If you want to reach me, I’'m at binky@DeathsDoor.com, on ICQ at 104950, and have a home page
which islinked via come.to/geffers. Email is aways welcome.

I’m releasing this book as freeware, and can be quoted from, or printed as desired. If included as part of
some piece of work, then please acknowledge its origin.

PREFACE

This book isfor Atmos and Oric 1 users who want detailed information about their computer.
For machine code programmers, an account of the various ROM cals is given with a full
description of the methods of handling the different parts of the machine.

This book was not written to teach machine code, but to provide enough background
information for existing 6502 programmers to use an Oric/Atmos.

If you are not an experienced machine code programmer, you will still find a great number
of hints and tips in the book. Even if you do not understand machine code at all you will still
be able to use the numerous utilities — such as Renumber, Merge and Auto.

Chapter one summarizes the hardware that makes up an Oric or Atmos
compulter.

Chapter two explains how BASIC works, from the way that programs and variables are
stored, to creating different windows of scrolling text. A list of Oric 1 and Atmos bugs
concludes the chapter.

Chapter three is about how machine code programs are entered, methods of calling your
program, and how a machine code program can use the software timers. Some machine code
pitfalls and tips are given at the end of the chapter, along with areal-time clock program.

Chapter four describes two important sections of Oric 1 or Atmos — the keyboard and the
cassette system.

This chapter describes how individual keypresses are detected — very useful for games
where severa keys are used at the same time. A complete account of the cassette system is
given, and after reading this chapter you will be able to write machine code programs that
save and load blocks of memory, or individual bytes. A verify program is listed for Oric 1
owners.

Chapter five gives an account of how BASIC uses RAM and ROM. All important ROM and
RAM addresses are printed, plus details of how the stack areais used.

Chapter six explores three important subjects — maths, HIRES and music. On the maths side,
a machine code programmer will now be able to use the ROM’s floating point routines. On
the HIRES side, you will find out how the high-resolution graphics can be used with different
mixtures of text, and a complete account of the ROM routines for CURSET, DRAW etc. is
given.

On the music side, this chapter describes how the ROM routines for MUSIC, PLAY and
SOUND are used, as well as giving details of how the sound chip is accessed.

Chapter seven presents a number of fast high-resolution graphics routines. A single-point
plotter is given which runs about 70 times faster than BASIC's CURSET command. A
PAINT routine islisted that will fill in any shape on the high-resolution screen.

Chapter eight gives six utility programs to help BASIC programmers. These are: Renumber,
Delete, Merge, Auto-Data, Trace, and ON-ERROR. Other utilities can be found throughout
the book.

Chapter nine completes the book with some ambitious ideas, including a primitive form of
speech synthesis, a multiprocessor and a program that alows single key entry of BASIC
keywords.

Geoff Phillips

CONTENTS

Page numbers are not given, because are irrelevant to the on-line version.

Preface
Chapter 1 Looking insidetheOric

1.1 Introduction

1.2 The ROM

1.3 Useof RAM

1.4 Differences between machines
1.5 The microprocessor — 6502
1.6 The 6522 — VIA

1.7 The 8912 sound chip

1.8 Text screen

1.9 High-resolution mode

1.10 Keyboard

1.11 Printer interface

1.12 Cassette system

Chapter 2BASIC

2.1 Introduction

2.2 Memory map of BASIC
2.3 Theformat of a program
2.4 Pointers

2.5 Numeric variables

2.6 Integer variables

2.7 String variables

2.8 Arrays

2.9 READ and DATA

2.10 Using RND

2.11 Using a printer

2.12 The Oric's status bytes
2.13 INVERSE and NORMAL
2.14 Creating windows of text
2.15 Controlling PRINT

2.16 Bugsin BASIC

Chapter 3 Using machine code
3.1 Advantages of machine code
3.2 Storing machine code
3.3 Types of machine code program
3.4 Creating a machine code program
3.5 Calling a machine code routine
3.6 Passing information to machine code routines
3.7 Patching into BASIC
3.8 Interrupts
3.9 Software timers
3.10 Machine code advice
3.11 Using the ! extension command
3.12 Using the & extension function routine
3.13 A real-time clock
3.14 Relocater program

Chapter 4 The keyboard and cassette system

Keyboard

Cassette input/output

Saving an area of memory
Loading an area of memory

A verify facility for version 1.0
CLOAD with an exit

Data saving and loading
Conclusions

Chapter 5 The Oric ROM in detail

GUTAUTWU NG R O

Introduction

Use of page O memory

Use of page 1

Use of page 2

Summary of ROM addresses

Chapter 6 Maths, HIRES, and music

rOWONODORF O

Introduction

Maths

High-resolution graphics
Sound and music

Chapter 7 Faster high-resolution graphics

7.1
7.2
7.3
7.4
7.6
1.7
7.8
7.9

Objectives

The theory behind the fast plotting routines
Collisions

Fast single-point plotter

Drawing larger shapes

Examples

PAINT subroutine

High-resolution compactor subroutine

7.10 Conclusions

Chapter 8 Useful utilities

8.1
8.2
8.3
8.4
8.5
8.6

Introduction

Renumber routine
Delete utility

Merge program facility
AUTO DATA feature
Trace utility

8.7

On-error GOTO feature

Chapter 9 Stretching the Oric toitslimits

9.1
9.2
9.3
94
9.5
9.6

Introduction

Speech synthesis program
Extra 6502 op-codes
Multitasking in BASIC
Single-key facility
Silence routine

144
144
148
149
153
157

1 LOOKING INSIDE THE ORIC

1.1 Introduction

In this chapter we shall look at the various components of the Oric. Some of the features
discussed will be further explored later in this book — the workings of the cassette system, for
example.

1.2 TheROM

The Read Only Memory device contained in each Oric is responsible for supplying the
BASIC interpreter program. It contains some 16K of instructions located between #C000 and
#FFFF (on all machines). Since a program cannot overwrite the ROM area, the area #C000 to
#FFFF is not affected by any write operations.

1.3 Useof RAM

Any BASIC program that you write is stored in the Random Access Memory located between
0 and #BFFF (or up to #3FFF for 16K users).

However, since the ROM needs a certain amount of working space, and because of other
considerations, any BASIC program that you write will start at #501. The top of usable
memory for your BASIC program is also going to be reduced, to at least as low as #B3FF, or
#33FF for 16K machines.

If you are using high-resolution mode and have not issued a GRAB command, then the top
of BASIC memory becomes #97FF (#17FF for 16K machines). This means that you have lost
more than 11K! The actual layout and use of the RAM is described in more detail in Chapter
5.

1.4 Differ ences between machines

From the point of view of hardware, there are very few differences between machines.
There are two major categories:

1. Your Oriciseither a 16K or a 48K machine.
2. Your Oriciseither version 1.0 (i.e, the ORIC-1) or 1.1 (i.e, the
ORIC ATMOS).

When you first power up your Oric, you will be advised of which version you are running.
Chapter 2 lists the differences between the ROMs, but there is no apparent difference when
looking at the hardware. Take note of your version number, so that you know which addresses
apply to your particular machine.

Theterms '16K machine’ and '48K machine’ relate to the total memory capacity. On a 16K
machine, there would seem to be a gap between the end of the RAM (#3FFF) and the start of
ROM (#C000). In practice, this is not the case, as the 16K of RAM is mirrored through each
16K block of addresses; e.g., location O is the same as locations #4000 and #8000. Thisis the
reason why a program can still write to the screen at #BB80 on a 16K machine. Do not worry
that this feature is ‘accidental’ and might not be true for all ORICs — the start-up routines use
the mirroring to detect which machine is which.

Some very early machines have dlightly different insides, but the only important difference
is that the sound on these machines is much louder and can cause the break-up of a TV
picture.

In this book, version 1.0 addresses are given first, followed by the version 1.1 address in
brackets.

1.5 The microprocessor — 6502

The 6502 is the heart of the computer, obeying instructions held in ROM or RAM. When
writing BASIC programs, the function of the 6502 is entirely invisible, but if you are going to
write machine code programs, you will need to know quite a lot about this device. It is
certainly worth while buying a book devoted to the subject. The programs in this book will
help you to understand some aspects of machine code programming, and part of Chapter 3
gives afew guidelines on the use of some 6502 instructions.

1.6 The6522 - VIA

The Versdtile Interface Adaptor (VIA) is a microchip that belongs to the same family as the
6502 processor (hence the similar number). It is a complicated, but invaluable, device which
links the Oric’s 6502 to its peripherals, as well as providing two timers.

A book devoted to the 6502 will often have a chapter on the usage of the 6522; here we are
only concerned with its use in connection with the Oric.

TALKING TO THE VIA

The 6522 chip is linked to page 3 of your memory map, so that whenever you read or write to
an address between #300 and #30F you are enabling the VIA. These 16 addresses are
normally mirrored throughout page 3 — so #380 is the same as #300 — but there is no reason to
use any location between #310 and #3FF.

A quick summary of these locations follows; for more information you will need to use a
book on the 6502 family of chips.

Address Description

#300 Port B in and out

#301 Port A in and out

#302 Define port B output or input (output if bits set)

#303 Define port A output or input

#304,5 Timer-1 counter

#306,7 Timer-1 latch

#308,9 Timer-2 counter/latch

#30A Shift register (not used by ORIC)

#30B Auxiliary control register

@30C Periphera control register

#30D Interrupt flag register

#30E Interrupt enable register (indicates what sort of event will cause an
interrupt).

#30F Read/write to port A without handshake.

CONTROL LINES ON THE 6522

The two ports can each contain one byte of information, but each bit can be separately set as
input or output. In addition to the ports, there are four control lines, called CA1, CA2, CB1,
and CB2. Hereis a summary of how the Oric uses al of the /O lines:

Port A — connects to the printer’s 8-bit bus. It is also wired into the 8912
sound chip.

Port B — this port is easier to look at bit by bit. Starting from the right, the
lowest three bits are used to supply the row when looking at the keyboard
(see Sec. 1.10).

Bit 3 of port B isset to 1 when a key is pressed — more on this later.

Bit 4 is connected to the strobe line on the printer socket — when 0 the
printer will expect data to be present on port A.

Bit 6 controls the relay circuit on the cassette socket.

Bit 7 connects to the cassette output circuitry.

CA1 —thislineisinput from the acknowledge signal on the printer port.

CA2 —thisline connects to the 8912 sound chip (see Sec. 1.7).

CB1 —thislineis connected to the cassette input circuitry. CB2 —

when 1 the 8912 reads from port A of the 6522.

THE 6522 TIMERS

It is not often realized that the Oric has two versatile timers at its disposal. Later in this book
it will be shown how easy it is to use these timers to provide a real-time clock facility —in
BASIC or machine code.

The most important timer is designated timer-1 and is used mainly to count time between
each interrupt. Without any supervision from the 6502, timer-1 counts down from a given 16-
bit value (at location #306,7) to zero — this counter can be read from addresses #304,5.

When zero isreached, timer-1 starts counting again, using the 16-bit value stored at #306,7,
and bit 6 in the interrupt flag register is set. When this happens, the 6522 will cause an
interrupt signal to be sent to the 6502 processor. If the 6502 has interrupts enabled, then the
appropriate interrupt handling subroutine will be called. It is very important to realize that the
timer will operate regardless of the state of the 6502 — disabling interrupts does not stop the
clock.

During cassette saving and loading, the VIA is set up differently, and the timers operate in
adifferent fashion:

Timer-2, which isidle at other times, is used when receiving bits from the cassette input port
in order to wait an exact amount of time.

The function of timer-1 is altered (by setting bits 6 and 7 of the auxiliary control register) so
that instead of causing an interrupt bit 7 of port B istoggled and the timer is automatically
Set running again.

When a cassette operation is complete, the registers in the 6522 are set back to their initial
valuesin order for the keyboard and printer to work normally.

1.7 The 8912 sound chip

All sound effects produced on the Oric are performed by the 8912 sound chip. In addition to
being able to generate music, this device has one input/output port — port A —which is used to
output the column number when polling the keyboard.

The 8912 is controlled by 15 eight-bit registers stored inside the chip. These are set up
whenever the Oric’s sound commands are executed. Here is a summary of how each register
is used:

Regi ste |Use

r The lowest 12 bits give the pitch of channel A

0,1 The lowest 12 bits give the pitch of channel B

2,3 The lowest 12 bits give the pitch of channel C

4,5 The lowest 5 bits give the pitch of the noise channel
6 Enables: each bit has a different meaning:

U Bit 6: set port A as output or input

Bits 3,4,5: mix noise with channels A, B, and C

8 Bits 0,1,2: enable channels A, B, and C

Channel A amplitude. If bit 4 is set then the music
91011,12 fenvelope isused; otherwise bits O to 3 give the fixed
13 volume

Channel B as above

Channel C as above

Length of the envelope

The lowest four bits give the shape of the envelope. This
is different from the value you would usein the PLAY
command, according to the following table:

PLAY value Actua register value

1 0,1,2,3,0r9

4,5,6,7, or 15

2
3 8
4 10or 14

5 11

14 6 12
713
Register 14 isthe /0 port A.

The 8912 registers cannot be accessed directly by the 6502 — but instead via port A of the
6522 and a couple of control lines.

CB2 or the 6522 is set in order to select the 8912, and then immediately cleared (the 8912
chip will accept data as fast as you send it).

CA2 of the 6522 is either set when a register number is being passed in port A or cleared if
it isdata for the register. So in order to write #F7 to register 1, you would:

1. Store 1 in #30F — port A without any handshake signals.
2. Set CA2 and CB2.

3. Immediately clear CB2.

4. Put #F7 in #30F.

5. Clear CA2 and set CB2.

6. Immediately clear CB2.

There is a subroutine in the ROM to handle the above procedure — see Chapter 6 but asthisis
unbelievably inefficient, you will find a faster version used in the speech synthesis program of
Chapter 9 (see 9.2).

1.8 Text screen

The text screen is organized as 28 rows by 40 columns of character cells. Each character cell
occupies one byte of memory between #BB80 and #BFDF, but creates a display of a character
6 pixelswide by 8 pixels down.

The information for each character is retrieved by the graphics chip depending on the
ASCII value of that character. Eight consecutive bytes are used for each ASCII character —
one for each line of pixels. The formula for the start address of the definition of a particular
character is: character value * 8 + start of character set.

The start of the character set (in TEXT mode) is #B400 for the standard character set (A to
Z,01t09, etc.) and #B800 for the alternate character set. Since these are in an area of RAM, it
is quite a Ssmple matter to redefine any character.

ATTRIBUTES

If the screen memory contains a control value, i.e., an ASCII vaue between 0 and 31, then
this value is taken as an attribute, and the character set is not referenced. This means that the
first 256 bytes of both the standard and alternate character sets is wasted. Also, you may have
noticed that the alternate character set overlaps with the screen!

An attribute changes the way that a particular line is interpreted by the VDU chip.
Appendix C of the Oric manual (or Appendix 2 of the Atmos manual) gives the 32 possible
attribute values. Some attributes — those between 8 and 15 — affect three different features of a
line— double height, flashing, and character set.

At the beginning of each line, five attributes are always assumed:

1. No flashing.

2. Standard character set.
3. Paper of 0 (black).

4. Ink of 7 (white).

5. Single height.

If the character being displayed has a value between 128 and 255, then the character will be
used as though 128 had been subtracted — except that whatever colours would have been
displayed become inverted.

For instance, if you POKE #BB80 with 65 —i.e., the letter A —you will get awhite A ona
black background. If you POKE 65+128 instead, then the colours change — white (7)
becomes 0 (7 — 7) and black (0) becomes white (7 — 0). This rule also works when you are
setting a paper attribute: POKE #BB80,17 leaves a red sguare at the top left of the screen,
whereas POKE #BB80,17+128 — although correctly setting the paper colour to red — creates
asguare whichiscyan (7 —1).

USING ESCAPE

One source of confusion lies when looking at how PRINT uses ESC (CHR$(27)) in order to
set attributes. It is a good idea to totaly ignore what the manua tells you about using
ESCAPE when writing in machine code.

The important fact is that ESCAPE only works because BASIC is creating all the
attributes for you — POKE 27 onto the text screen and nothing will happen. (Try poking it
onto the high-resolution screen!)

The use of ESCAPE when using PRINT is unavoidable because this command traps any
ASCII value less than 32 and treats them like control characters (changing parameters like
keyclick, etc.).

The PLOT command, like POKE, does not understand escape sequences,
so direct attributes must be used.

1.9 High-resolution mode

High-resolution mode moves away from using a character set, and instead causes the screen
to directly reflect the contents of the video memory.

Each byte in the area #A 000 to #BF3F affects 6 horizontal pixelsin a matrix 240 across by
200 down. Part of the text screen remains at the bottom, at addresses #BF68 to #BFDF,
although in high-resolution mode, these three lines use the character sets at #9800 to #9FFF.

This is necessary as the high-resolution screen overwrites the normal character set area.
The exact details of how BASIC enters into high-resolution mode can be found in Chapter 6.

From a hardware point of view, the graphics chip switches modes when an attribute of 30
or 31 isinterpreted. When an attribute of 26 or 27 is encountered, the mode is switched back
to text. All the copying of character sets, etc., is carried out by software.

1.10 Keyboard

The keyboard on the Oric is a matrix of 8 columns connecting to 8 rows. By writing down
one column and along one row, it is possible to examine the state of an individual key.

After every three interrupts, the system scans all the columns and rows in an attempt to find
any depressed keys. The ROM subroutine only looks for one key down at a time, except that
it does one extra search for the SHIFT and CONTROL keys. There is no reason, however,
why a program cannot look at every key individually —thisis very useful for games.

Two ports are used to poll the keyboard — port B of the 6522 and port A of the 8912.

The column is output on port A of the 8912 in the form of one bit cleared in a byte
containing #FF. The row is output as a number (0 —7) on port B of the 6522 and bit 3 of port
B read back to determine whether that key is pressed.

Chapter 4 gives further details about reading from the keyboard.

1.11 Printer interface
When a byte is sent to the printer, the following occurs:

1. The byte is sent along port A of the 6522.

2. Bit 4 of port B is cleared and then set (this is the printer’s strobe line).

3. The Oric waits until CA1 is pulsed by the acknowledge line on the printer.
CAlisnot read directly, but causes bit 1 of the interrupt flag register to be
set inside the 6522.

1.12 Cassette system

Chapter 4 explains how your programs can use the cassette system to save and load data, so
this section is only concerned with some of the hardware aspects.

CASSETTE OUTPUT

The cassette output circuitry can only handle one bit at atime, creating either a high tone or a
low tone depending on bit 7 of the 6522 s port B.

This bit is set or reset automatically by the 6522 after timer-1 has finished counting down;
the length of time to be counted depends on both the tape speed and whether the bit isO or 1.
In order to save a whole byte, the cassette routines use a series of eight shift instructions to
separate each bit.

In order for the 6522 to toggle PB7 at the end of each countdown, bits 6 and 7 of the
auxiliary control register are set. Also, for no valid reason, port B is set completely to output
(bit 7 is dready in the output state). Because port B is zeroed in this process the printer’s
strobe is activated and an unwanted character is sent to the printer.

CASSETTE INPUT

The cassette circuitry connects to the CB1 line on the 6522. When this goes from low to high
the CB1 flag is set in the interrupt flag register of the 6522. Timer-2 is used to count time
before looking at the CB1 flag, and each bit is built up into a whole byte using a series of
rotate instructions.

CASSETTE RELAY

Finally, the cassette relay connection is activated before any of the cassette routines by setting
bit 6 of port B on the 6522. This hit is cleared after al cassette operations, deactivating the

relay.

2 BASIC

2.1 Introduction

An understanding of the workings of BASIC is necessary if it isrequired to incorporate machine code
routines within BASIC programs, or if special utilities, e.g., ‘Renumber’, are to be written.

2.2 Memory map of BASIC

BASIC israther greedy on the RAM — hereis how it uses its memory:

#0000 — #00FF — almost al is used by BASIC — see Chapter 5.
#0100 — #010F — used when converting floating-point numbers to
strings.

#0110 — #01FF — the normal 6502 stack area.

#0200 — #02FF — partialy used by the non-standard parts of BASIC
(e.g., DRAW and MUSIC).

#0300 — #03FF — an input/output area used by the 6522. Thisis not

RAM.
#0400 — #04FF — not used by BASIC —reserved for use with the disk

system.
#0501 — (#9C) — 1 —the BASIC program occupies memory as far as

indicated by the address in locations #9C and #9D.

(#9C) — (#9E) — 1 — any simple numeric variables are stored here,
along with the identification of each string variable.

(#9E) — (#A0) — 1 —numeric arrays are stored in this area, along with
the identification of string arrays.

(#AO) — (#A2) —thisarea of memory is unused. It can be seen that
pointer #A0 reaches up to meet pointer #A2 coming down.

(gA2)+1 — (#A6) —this areais used for storing both permanent and
temporary strings of data. Temporary strings are only cleared
when there is no more room below #A2, or when the FRE function is used.

#9800 — #9BFF — a copy of the standard character set is created here
when a HIRES command is executed.

#9C00 — #9FFF — a copy of the alternate character set is moved here
for usein HIRES.

#A000 — #BFDF — video memory used in HIRES mode.

#B400 — #B7FF — the standard character set when in TEXT mode.

gB800 — #BBFF — the alternate character set when in TEXT mode.

#BB80 — #BFDF — the video memory when in TEXT mode. Note
that this overlaps part of the alternate character set.

BFEO — #BFFF — unused.
2.3 The format of a program

A program is stored in a completely different way from its external appearance. If you enter asimple
program and then use PEEK to see what has been entered, you will not find evidence of either the
program keywords (such as SHOQOT) or of line numbers.

Each lineis stored in its correct place in the program in an exact way. Consider the example:

10 POKE4,3 20 END
Here is how that is trand ated:

#0501,2 Link address to the next line in the program —in this case,
#50A. (Remember that the low byte of the addressis
#503,4 always first.)
[Two-byte binary form of the line number, e.g., #0A.
#505 /A one-byte ‘token’ which means ‘POKE’ —#B9. All BASIC

keywords have a unique token value, always between t80
land #FF, as this conserves memory and makes it quicker
to execute an instruction (Table 2.1, page 12, gives alist of
all possible tokens).

#506 The ASCII codefor ‘4" — 434,

#507 [The ASCII code for comma— #2C.

#508 The ASCII codefor ‘3" — #33.

#509 IAn end of lineindicator of #00.

#50A,B The link to the next line— #510.

#50C,D Line number 20.

H#50E Token for END — 080.

H#50F End of line— #00.

#510,1 End of program’s link field — always contains a value < 256. In other words, #511 must be

zero, but #510 could be anything.
#512 Start of free space.

Table 2.1 List of all BASIC tokens

#80. ENMD #81. EDIT
#3Z. STORE #B83. RECALL
#54. TROHW #B5. TROFF
#9&. PF #B7. FLOT
#9B. PULL #B?. LORES
#84. DOKE #8Fk. REFEAT
#8C. UNTIL #80. FOR
#BE. LLIST ®5F. LPRINT
#20. HEXT #71l. DATA
#P2. TNPUT 89E. DIM
#94, CLS #35. REALD
#2&,. LET #77. GOTO
#98. RUN #77. IF
#96. RERTORE #9E. GOSUB
#PU. FRETURN #90. REM
#FE. HIMEM #3FF. GRAR
#A0. RELEASE #Al. TEXT
#A2. HIRES #AS. SHEOT
#A4. EXFLODE #AS. IAP
#N&. FING #A7. SOUND
#AB. MUSIC #a7. PlLay
#MA. CURSET #RAE. CURMOV
#Al. DRAW #nb. CIRCLE
#AE. FATTERN #AF. FILL
#BO. CHAR #B1. FPAPER
#B2. Ih¥k #B3. STOF
#B4. ON #B3. WALT
#RB&. CLOAD #B7. CSAVE
#B8. DEF #H9. FOKE
#BA. PRINT #BE. CONT
#BC, LIST #BD. CLEAR
#BE. BET #BF. CALL
#oo . ! #C1. MEW
#E2. TRAE(#CZE. TO
#C&. FN #C=. SPCA
#Ch. € #C7. NAUTO
#£B8. ELSE #C2. THEN
#CA. NOT #CB. STEP
#CC. + #CD. —

#CE. * #CF. 7

#oo, -~ #D1. AMD
s02. OR #D3, >

#04. = #05. <

#DA. SGN #07. INT
#D8. AES #0%?. USR
#. FRE #DE. FOS
#DC. HEXs #0OD. &

#DE. 5QR #DF. FRHND
#E0. LN #EL. EXF
WEZ, (A5 HEZ., SIN
8E4. TAM #HES. ATMN
8E&. PEEK #E7. DEEHK
#FE8. LOG HET. LEN
BEN. STR% #EE. VAL
#EC. ASC #HED. CHR%
BEE. FI1 #EF. TRUE
#Fo. FALSE #F1l. KEYS
#F2. SCRN #FX. FDINT
AF4. LEFTE® #FS. RIGHT®

Notethat thetokenslisted arethose for VI.I ROMs. The only differencesfor V1.0 ROMsare:
‘STORE’ is‘INVERSE' and ‘RECALL’ is‘NORMAL’.

The use of the link addressis to allow a quick method of locating a specific line. Y ou can try this
yourself by typing:

| = #501: REPEAT: J = I: | =DEEK(I): UNTIILI <256: PRINT J

which finds the highest address of your program. Since the links affect the ‘LIST’ command, you can
have endless fun atering the links of a program so that, for instance, a program listsitself backwards!

Since the line number is aways stored in a 2-byte binary format, it must be realized that thereis no
saving in having aline number of 5 as opposed to 50 000 — except where a GOTO or GOSUB occurs.
GOTO 12345 takes up 6 bytes, but GOTO 5 only needs 2 bytes.

2.4 Pointers

As mentioned in the memory map, there are anumber of pointers used by BASIC to separate a
program from its variables and arrays. Not al of these are useful: #9A is the start of the BASIC pointer,
but BASIC refusesto work if you move it from its normal value of #500.

The most important pointer isthat at #9C which gives the address of the start of BASIC variables— or
the end of the BASIC program + 1. Printing the DEEK of #9C is often more useful than the FRE
command since it gives you the exact position of the end of your program. When a program is saved,
this pointer is used to give the upper address limit. It follows, therefore, that by adjusting the pointer at
#9C you can save more than just the BASIC program using a single CSAVE — though remember to
DOKE the correct value before you do anything else after you have loaded back. The Oric assumes that
#9C is always correct, adding or subtracting values as a program is altered.

When a BASIC program is loaded the upper load address is automatically stored back at #9C. Version
1.0 owners should beware of loading machine code programs in on top of BASIC programs since the
#9C pointer will then point to the end of that machine code section. The solution to thisis to either
correct #9C or load machine code routines before loading aBASIC program. Version 1.1 owners need
not worry about this particular fault.

HIMEM

The HIMEM command is often most unhelpful — especially on V1.0 machines. In cases where you
cannot persuade your machine to do HIMEM correctly, smply DOKE #A6 with the value before
running the program. If you wish this to be done as part of your program, you will also have to alter
#A2 to the same value as #A6, otherwise strings will be placed in the wrong part of memory.

2.5 Numeric variables

All calculations are donein *floating-point’ arithmetic. This means that an expression such as ‘1+1’
presents as much difficulty as *3.1415+9.7373'.

When you assign avalueto avariable, asin ‘LET A=52', thisvariable is stored away in a 7-byte area
comprising:

Two bytes containing the identification *A’.

Five bytes containing the floating-point representation of the number. The exact format of these 5

by’ tes will be described in Chapter 6.

The identification is simply the first two characters of the variable’ s name, or one character followed
by #00. Thetop bit in each of these can be set for the different types of variables—for anormal
numeric variable both bits are clear.

For the fastest possible calculations, always use simple numeric variables. It must be stressed that ‘10
I=1+4" is slower than *10 1=1+ J.

2.6 Integer variables

These are stored in the same amount of memory as for normal variables, but the format is different:

1. Two bytes of identification (as before) with the topmost bits set in both bytes.

2. A 2-byte binary value of the integer stored in twos-complement form with ahigh byte followed by a
low byte (i.e., against the usual convention).

3. Three unused bytes containing zero!

The advantage of using integer variables is only where it would save the use of INT. Contrary to many
magazine articles stating the opposite, there is no saving in aprogram that uses integer variables (but
seeinteger arraysl).

2.7 String variables

Any string variable has two components:

1. Anidentification of the variable' s name, occupying 2 bytes, as for numeric variables. To identify the
variable as a string the second byte has the top bit set. Thisidentification is followed by the length of
the string, the address of the string, and two spare bytes.

2. Thestring of characters must be located somewhere in memory.

The first component is in the area between (#9C) and (#9E) — as for any numeric variable. The second
component, however, can bein two distinct areas:

1. If aprogram assigns a definite value to a string variable, with either READ or LET, then the first
component of the string pointsto the place in the program where the string has been entered. So,
unlike some other computers, the Oric does not waste memory space by repeating the same set of
characters.

2. If astring ismodified in some way, e.g., LEFT$is used, or one string is moved to another then the
resultant string is placed in the string temporary space which lies between the top of available
memory and the end of array space. The pointer to the next string space works backwards through
memory o that new arrays can be added without the need to reorganize the strings. Since a string
could be created that makes an earlier version redundant, it should be noted that the string area will
eventually become full. When this happens, or when the FRE function is called, a subroutine known
as ‘garbage collection’ is entered and all unwanted strings are removed. Garbage collection can
occur at any time when a string is being created and can take several minutes to complete. The
length of time that garbage collection takes is in direct proportion to the quantity of permanent
strings.

2.8 Arrays

Each element of an array is stored in the same format as an equivalent single variable, but without the
wasted space. For the integer arrays only 2 bytes are needed per number stored.

An array is stored in sequential order in memory, e.g., consider the array A(1,1,1). The array is stored
working on a left-to-right basis:

A(0,0,0),A(1,0,0),A(0,1,0),A(1,1,0),A(0,0,1), etc.
For each array there is an overhead of at least 7 bytesin the memory area between pointer #9E and #A0
This areais made up as follows:

1. Two bytesidentifying the array name — exactly as for variables, with the top bits set or cleared to
indicate the type of array.

2. A 2-byte binary length which gives the exact amount of memory occupied by this array (excluding
the text part of a string).

3. One byte which gives the number of dimensions.

4. For each dimension, working from right to left, there is a 2-byte number which gives the dimension
plus one (remember that you can have a zero subscript when accessing part of an array). This
number is stored with the high byte followed by the low byte.

2.9 READ and DATA

It is often useful to be able to use READ in amore controlled way — reading from a particular line of
DATA, Some more advanced BASICs have this facility — thisis often known as RESTORE N, where
N isthe line number from which DATA isto beread.

The READ command does not keep account of the next line number from which to read, but instead
uses#B0 storethe last addressin memory where DATA was read. After each READ command, the
line number used is stored in #AE,F so that an error message can report on the current data line (for
‘OUT OF DATA’, etc.). Writing to #AE,F will have no effect on READ operations.

04E0: AS 00 LDA $00

04E2: B85 33 STA $33
04E4: AS 01 LDA %01
0O4E6: 85 34 STA %34
04EB8: 20 E4 Cé JSR $C&4E4
O4EB: AS CE LDA $CE
O4ED: 38 SEC

O4EE: E9 01 SBC #%01
04F0O: 85 BO STA $BO
04F2: AS CF LDA $CF
O4F4: E9 00 SBC #%00
0O4F&: 85 Bl STA $Bl
04rFB: &O RTS

04F9: EA NOP

04FA: EA NOP

A RESTORE N FACILITY

Only a very short machine code program is needed to give BASIC this facility, which has been listed
below in Program 2.1. Although the routine has been put at address #4EQ, it will work at any spare
memory location.

Version 1.1 ROM owners should change #4E8 to * JSR #C6B9'.

The machine code routine takes the line number stored at address 0,1, calls a ROM routine to find the
address of that line, and stoics that address minus 1 at #B0 to #Bl.

USING RESTORE N

A BASIC program has been listed below (Program 2.2), for V1.0 owners, which demonstrates how to
call the machine code routine. Program 2.3 isthe listing for V1.1 owners—the only difference isthe
JSR address in machine code.

10 A$="A50089533A501853420E4C4ASCEIBETO18SBOASCFEROOBSBLAD "
1S I=#4E0

20 FORI=1TOLEN(AS) /2: B=VAL ("#"+MIDS (A%, (I-1)%2+1,2)):C=2+1-1:POKEC,E
I0 NEXT

100 INPUT"WHICH LINE?";L

110 DOKEO,L:CALL#4EQ

120 FORI=1TOZ: READAS: PRINTAS: NEXT

130 60TD100

1000 DATA43Z,55,64,77,88,99

1010 DATATHIS IS LINE 1010

1020 DATA&EG,77,88,99,84,66

2000 DATALINE 2000 DATA

000 DATASS, 6, 4,4

Program 2.2 Restore N -~ BASIC example for version 1.0

e

S REM NEW ROM VERSION OF RESTORE X
10 A$="AS008533A501853420B9CAASCEIBEY0185BOASCFEYOOESE1 0"

15 Z=#4EO0

20 FORI=1TOLEN(A$) /2: B=VAL ("#"+MID$ (A%, (I~1) #2+1,2)) :C=Z+1~1:POKEC, B
30 NEXT

100 INPUT"WHICH LINE?"jL

110 DOKEO,L:CALL#4EO

120 FORI=1T03:READAS: PRINTAS:NEXT

130 60T0100

1000 DATA43,S55,66,77,88,99

1010 DATATHIS IS LINE 1010

1020 DATALA, 77,88, 99, &b, b&

2000 DATALINE 2000 DATA

3000 DATASS,&,4,4

Program 2.3 Restore N — BASIC example for version 1.1

2.10 Using RND

The RND function will start from the same sequence of numbers every time you start up an Oric,
providing the argument which follows RND is positive. Although it is not made clear in the manual,
when the argument is negative this starts off a new sequence of random numbers.

It follows that in order to make RND truly random, you must supply it with an initial negative
random seed. One of the software timers, incremented 100 times per second, can be employed here.
Unless you do a WAIT command, and providing there has been some sort of user input (to delay
the machine by an unknown time), you can use the third timer at #276,7. For example:

5 GET Z$
10 A=RND(— DEEK (#276))

Note that A itself isnot a very random number —it will usually be a number smaller than 0.01 — but any
RND afterwards should be correctly balanced between 0 and 1.

2.11 Using a printer

It is often required to make a choice as to whether to print something on a printer or on the screen.
Since PRINT and LPRINT are different commands, it would seem that a program would need two
separate lines to handle any one PRINT statement. Fortunately for us, the LPRINT command can be
achieved by poking 255 into #2F1 and using PRINT. Thiswill stay in force until either:

1. A proper LPRINT command has finished.
2. The program returns to command mode.
3. Address#2F1 isreset to zero.

Note that this affects al types of PRINT — even the printing of prompts on INPUT commands!

2.12 The Oric’s status bytes

There are two locations in page 2 which are concerned with the status of the keyboard and the screen.

The first of theseis at #20C and controls the CAPS lock function. This location is 127 when CAPSis
off and 255 when on. If you put any other valueinto 420C, then the Oric will no longer respond
correctly.

The most important status location is at #26A. The lower 6 bits of this byte each have their own
meaning:

BIT 0 —cursor ON when set.

BIT 1 —screen ON when set.

BIT 2 —not used.

BIT 3 —keyboard click OFF when set.

BIT 4 —ESC has been pressed.

BIT 5 —columns 0 and 1 protected when set.

This means that you can POKE into #26A in order to turn off keyboard click, etc., rather than the
unpredictable method of printing control characters.
For example, POKE #26A,10 turns off keyboard click and the cursor.

2.13 INVERSE and NORMAL

Version 1.0 owners will recognize these two commands as they crop up when listing all the tokens.
Version 1.1. users have STORE and RECALL instead, but what did INVERSE and NORMAL actually
do?

Although the commands do not actually work, on the V1.0 machine there are still some instructions
that relate to them. The theory isthat if you set the top bit when displaying a character on the screen, it
isprintedin ‘inverse’ colours — this has been explained in Chapter 1.

What remainsin old ROM Oricsisthe code which OR’s location #2F7 (the inverse flag) with any
character asit is printed. Unfortunately, PRINT nearly always strips off the top bit — otherwise it would
be possible to use POKE #2F7,128 to create an INVERSE facility on the old ROM Oric. You can have
some fun though putting different values into #2F7 and watching PRINT go haywire!

Incidentally, the only place where PRINT does not take off the top bit (again, only for version 1.0
Orics) is where control-D double height isin force, and when the second lineis printed.

2.14 Creating windows of text

The normal way of presenting 27 lines of scrolling text is by no means fixed. It is possible with just a
handful of DOKE commands to make just part of the screen scroll up — leaving the rest of the screen
untouched. This has many uses where part of the screen is being plotted.

Here are the DOK Es needed for version 1.0 machines:
1. DOKE #26D with the start address where scrolling is to begin minus 40.
2. POKE #26F with the number of lines which are to be scrolled.

3. You must clear the screen after doing these commands.

For version 1.1 ROMs, the procedureiis:

1 DOKE #27A with the start address of the screen.

2. DOKE #278,DEEK (#27A)+40.

3. POKE #27E with the number of linesto scroll.

4 DOKE #27C, (PEEK(#27E) — 1) *40 —thisis the number of charactersto be scrolled up and

must agree with location #27E.

The CLS command should be issued after setting up a different format for the screen.

2.15 Controlling PRINT

On version 1.1 machinesthe PRINT @ facility allows you to print at any place on the screen. Thisis
also provided on 1.0 machines by way of an add-on machine code routine in the manual, but no
explanation is given on how it works. If you wish to use the general PRINT subroutine in a machine
code program, you will need to know alittle about how PRINT works in this respect.

There are two locations which control where the next PRINT goes to: #268 — the number of lines down
—and #269 — the number of lines across. These are relative to the start of the screen as defined by #26D
(version 1.0) or #27A (version 1.1). On version 1.1 machines you a so have to write the address of the
start of the line to #12,3.

On version 1.0 follow this example of moving to D lines down and A characters across:
100 POKE #268,D — 1:PRINT:POKE #269,A

Hereisthe sameline for version 1.1:

100 POK E#268,D:POK E4269,A:DOKE#12,DEEK (#27A)+(D — 1) *40

To avoid large numbers of solid blocks appearing everywhere, it is recommended that you turn off the
cursor before moving around the screen.

2.16 Bugs in BASIC

Most people will be aware of one or two problems with version 1.0 BASIC, the most notable example
being the TAB function, which is quite useless (although the previous section should help with the
problem).

In this section, we look at al the bugs and, where relevant, how they can be overcome. First of all, here
are the quirks found in version 1.0 machines.

1. TAB and COMMA do not work correctly. It is best to use either SPC or, aternatively, POKE #269
with the TAB position.

2. STR$, when packing a positive number, putsthe attribute ‘2’ at the front instead of a space. This
often results in green numbers! The cure isto use MID$ to take off the unwanted character or to define
anew STR$ function using the & function.

3. EL SE does not work under several conditions, for different reasons, so it is best to smply avoid the
command altogether.

4. HIMEM is not set correctly on power-up. The solution isto always put ina HIMEM command at
the start of the program, e.g., HHIMEM #97FF.

5. When in high-resolution mode, the message ‘ SAVING' is till output to address #BB80 — putting
one line of junk onto the screen. There is no easy cure for this problem, apart from writing your own
save-to-tape routine. If you are saving a high-resolution screen, then first copy it to afree area of
memory and save that part of memory.

6. When the printer isin the middle of either an LLIST or a series of LPRINTS, characters are often
corrupted into ‘squiggles . Thisis because the interrupt routines which read the keyboard frequently
conflict with the use of the printer. The solution is to stop the clock (CALL #EDO01) before printing
and to start it again after printing is complete (CALL #ECC?). If you are using LLIST, then you can

type:
CALL #EDO1: LLIST

and then use the Reset button underneath.

7. When you use CLOAD from within a program, BASIC unkindly ends the program once the load is
complete. To get around this, you could do a series of CALL instructions instead of CLOAD. Chapter
4 contains all the necessary information.

8. The function HEX$ has an unfortunate tendency to print just the hash sign for zero. This condition
should be specially tested for in your program.

9. The GET command refuses to believe that you have pressed the single quote key and instead returns

an empty string (* “). It isimportant that you test for this condition before using one of the functions
such as ASC.

10. If aprint line starts with control characters— e.g., ESC N, etc. —then the protected columns 0 and
1 are used, overwriting any PAPER and INK attributes. Always start the line with a non-attribute
character, such as space,

11. The alternate character set is exactly one bit out of place! The purpose of the alternate
character set, when not modified for a special use, isto provide a ‘chunky’ graphics capability. The
format of such charactersisidentical to that used in the BBC's CEEFAX system, allowing a resolution
of 80 chunks across by 84 chunks down. Each character cell contains six such chunks, which means
that 64 graphics definitions are required to allow for al possihilities. The Oric’s character set hasin
fact been set up for this. Characters between 32 and 95 contain all variations between atotally blank
cell and afilled cell. However, in version 1.0 the entire character set must first be divided by 2 (and
therefore shifted to the right) before it can be used. This can be done either with a ssimple BASIC loop:

FORI = #B900TO #BAFF: POKEI,PEEK(I) /2: NEXTI
or by using a short machine code routine:

LDY 000

LOOP: LSR B900, Y

LSR BAQO, Y

DEY

BNE LOOP

RTS

12. If the single quote character is found at the start of a DATA item, then because of confusion
with the REM facility, therest of the DATA lineisignored. Use double quotes around any DATA
items containing single quotes.

13. When loading in amachine code program, be warned that the ‘end of BASIC’ pointer at
#9C,D is altered to reflect the end address of the machine code.

To overcome this you could either reset the value at #9C to #9D after the load or make it arule to
always load the machine code routines first.

14. In the instruction POKE N, #8, the hexadecimal sign upsets BASIC, and zero will be POKEd.
Always use a decimal value or avariable instead. This fault is the reason why you will often see
decimal numbers mixed with hexadecimal numbers in this book.

The DOKE command does not suffer from this fault.
15. Oneinteresting bug isthat POINT will work in text mode!

16. When loading afile, the filename is only printed when it is actually supplied within the CLOAD””
command

17. Although potentially useful, it is still a fault that makes the screen scroll down when the cursor is
moved too high.

The following faultsliein version 1.1 ROMs:

1. ELSE failsto work should the colon character occur in quotes after the EL SE. For example: IF A=1
THEN PRINT ELSE PRINT “HELLO:".
2. One very obscure problem arises when:
(a) The cursor has been turned off.
(b) A character is placed at the very spot where the cursor would have been.
(c) That character is ‘inverse’ — between 128 and 255.
When this happens, and providing interrupts are running, that character is forced back to ‘ normal’
mode — losing the top bit of the character.

One solution for this problem isto force the current cursor position to a place on the screen (or even off
the screen!) where it can do no harm. Thisis done by poking locations @268 and t269 as described
earlier.

3. One very minor bug isthat going into HIRES when in control — S mode results in BASIC writing to
the wrong part of the screen. Make sure that you have enabled the screen before using the HIRES
command.

3. USING MACHINE CODE

3.1 Advantages of machine code

BASIC, though easy to use, hard to misuse, and ideal for simple programs, has two serious drawbacks:
1. Itisvery dow to run.
2. It can often (but not always) use up alarge amount of memory space.

One alternative language, FORTH, although faster than BASIC, is quite difficult to use. It isunlikely
that you would ever see a program on the market which used FORTH, for the simple reason that the
FORTH language would have to be sold as well.

Machine code, on the other hand, can be loaded and executed on all Oric machines. Indeed, in many
cases a machine code program will be easier to convert to a different machine than its BASIC
equivalent.

The speed of a computer like the Oric is not always appreciated. A simple machine code instruction
takes two microseconds to compl ete, whereas any single BASIC command will take at least 2
milliseconds.

If you intend using machine code you will quite definitely need two things, in addition to this book:
1. A book on the programming of the 6502.

2. An assembler/disassembler program. The one used in the preparation of this book was ORICMON
from Tansoft 1.td. Without such a program, you will have to work out the machine code instructions
by hand. An assembler allows you to enter just athree character mnemonic — such as LDA —and it
works out the actual machine code values— e.g., LDA #is#A9.

A full discussion of machine code is beyond the scope of this book, but at the end of this chapter you
will find some advice on the more difficult aspects of this subject. The book 6,502 Software Design by
Leo Scanlon is particularly recommended as both a tutorial and areference guide.

3.2 Storing machine code

A programmer has no choice as to where a program written in BASIC resides — he or sheis stuck with
the area #501 upwards.

A machine-code programmer has the whole of the machine available, at least in theory. If a machine
code program will never return to BASIC, or use a subroutine in the ROM, then that program can be
located anywhere between #400 and #B4FF, and can use the area #00 to #2FF as a scratchpad area (not
forgetting to allow a certain amount of room for the stack).

The programs and subroutines in this book are of the kind that always return to BASIC, soitis
important not to upset BASIC too much. This means not overwriting certain RAM areas in pages 0 and
2 and allowing BASIC to create variables and strings. Y ou can use HIMEM to limit BASIC' s memory,
and can thereafter use the remaining memory for your own needs. Chapter 5 explains which areas of
page 0 and page 2 RAM are used by BASIC.

If you are writing an add-on machine code program in order to manipulate a BASIC program, then you
really want to put your program in a place which is unused. The most common of these are:

1. The stack area—from #110 upwards — can be used by short programs. Providing that you do not do
many GOSUB, FOR, or REPEAT commands, you will be able to use up to about #1CO. The stack
areais never cleared by BASIC, except during normal use.

2. From #400 to #4FF, 256 bytes are available. Be warned, however, that the Oric disk system makes
use of thisarea.

3. Thefirst 256 bytes of each character set are unused, so programs can be put at #8400 to #B4FF and
#B800 to #B8FF (or in HIRES mode at #9800 to #98FF and #9C00 to #9CFF). Although the Reset
button on the Oric causes the character set to be regenerated these areas are not affected.

4. Sincethe alternate character set israrely used the entire area between #8800 and #BB7F is

available for a machine code program. This area of RAM isideal for facilities like Renumber.
5. Another ‘hidden’ area lies between #BFEO and #BFFF. This areawill only be overwritten if
HIMEM isincorrectly set, and survives the commands ‘HIRES', ‘ TEXT’, and the Reset button.

3.3 Types of machine code program

When you write a program that is all in machine code you do not need to worry about interfering with
BASIC. If your program callsthe BASIC ROM for certain functions you should keep clear of the same
areas of RAM that the particular subroutine uses. For instance, if using the MUSIC command keep
away from the parameter area #2EQ to #2EF.

Since a machine code program can be made to autorun at the start address of the load, it makes sense to
use this feature and make your program start at the earliest address.

If you are using an Assembler program, such as ORICMON, you will aso have to avoid the area of
RAM used by that program.

A common type of machine code program is used when a BASIC program needs an extra facility, or
perhaps a machine code subroutine is used to speed up part of the program. In this case the BASIC
program will often use DATA statements in order to set up the machine code. A more efficient way, for
larger sections of code, isto load in a separate machine code file from tape or disk.

Another method isto put the machine code after the BASIC code and modify the #9C pointer before
saving to encompass the machine code. The first instruction in the program should reset the pointers
#9C, #9E, and #A0 back to the end of the program.

For example:

BASIC program #501 — # FOO

M/C program #2800 — #2E00

Before saving, DOKE #9C, #2EQ0. In the program:

1 DOKE #9C, #1F02:CLEAR
An example of a BASIC program creating a machine code subroutine can be found below in Sec. 3.4.

The third type of machine code program occurs where a BASIC program is being modified. Normally
such aroutine will be loaded separately from the BASIC, although you must remember to reset the #9C
pointer on version 1.0 machines — this can often be done by the machine-code routine itself.

3.4 Creating a machine code program

Nearly all the programsin this book have been listed in terms of the assembly mnemonics and the
actual machine code. In order to set up the programs you are best advised to use a machine code
monitor/ assembler package. If such afacility is not available, you can quite easily use a short BASIC
program to read in machine code.

Program 3.1 is an example of a program to read in a short section of code by using DATA statements.

The program itself is very useful, asit totally disables the use of control — C. This works by testing for
ASCII code 3 in aroutine that is patched into the dow interrupt link.

3 REM IGNORE CONTROL-C

10 FOR I=#BFEQ TO WBFEE:READ D:POKE [,D:MNEXT I

20 DATA ®B, 848,840, 8DF , 82, #C9, #8353, DO, 83, #CE, #DF , 82, #568, #78_ #40

S0 IF FEEK (#DO0OC) =166 THEN DOKE®ZZ1,#BFEO:POFE®ZI0, 76
40 IF PEEK(#D0O00)< »166 THEN DOKEWZ4E, WBFEO: POKEN24A, 76

Program 3.1 Disable control - C

3.5 Calling a machine-code routine

A machine code program which is completely self-contained can be automatically run by using the
AUTO command. Alternatively, a CALL can be used to start the program off.

Where aBASIC program callsam/c subroutine, CALL is often used. If a CALL isto returnto BASIC
the subroutine must end with the RTS (#60) instruction. Do not worry about saving registers when
writing such a subroutine.

CALL isalso useful when entering add-on subroutines, such as * Renumber’, when it isused as an
immediate command.

In addition to CALL NN, there are severd alternatives:
|. USR and & functions.

2. ! —the extension command.

From the point of view of a machine code subroutine, CALL NN is much the same as!, and
USR(X) isidentical to & (X). One difference is in the setting-up. For the extension command ‘!’
you DOKE the start address into #2F5, and for ‘&’ you DOKE the address into #2FC. The USR
facility uses DEFUSR in order to set up the start address.

The difference between ‘&’ and ‘!’ (or USR and CALL) isthat & isafunction that returns a value;
the! command can only take in values. Therest of this chapter will only deal with & and!,
although the same considerations apply for CALL and USR.

3.6 Passing information to machine code routines

The most common method of passing small amounts of datato a machine code routineis with the
DOKE and POKE commands. For small data areas, such as for addresses, use the area#0 to #B in page
0. Chapter 5 will help you in determining other areas of memory available.

The! and & keywords can both take parameters, e.g., & (A1*3), and this will be explained in Sec. 3.11.

A machine code routine could read a BASIC variable, but this would involve quite a bit of searching
and conversion.

3.7 Patching into BASIC

Although BASIC isin unalterable ROM, there are severa cases where it jJumps out to an area of RAM.
The reasons for doing this are:

1. It lets programmers patch in extra facilities.
2. Italowsfor add-ons, such asdisks.
3. It can he more efficient to write some instructions in page O.

Each of the patch areas has been listed bel ow, with the address for version 1.1 ROMs givenin
brackets:

At #1A —ajump vector to the routine that prints ‘READY’. By changing this jump to your own
routine it is possible to:

1. Trap errors.
2. Prohibit control — C.

See the ON — ERROR facility

of Chapter 8.

At #E2 lies a very important subroutine. At #E2 the address at #E9,#EA is incremented. Then at #E8,
the contents of the address at #E9, #EA are loaded. This provides a very fast subroutine for reading in
characters from the program.

After getting the next character, the routine jJumps back into ROM. It is a very simple matter to alter
the routine at #E2 in order to jump to your own subroutine. By doing this, you can look for special
instructions (perhaps ‘IMPLODE’ and ‘PONG'!). ~~~ important consideration is that you jump
back into the ROM as though nothing had happened — remember to save all the registers.

#228 (4244) isthe address of the ‘fast’ interrupt jump. By altering the jump address at #229,A
(#245,6) you can provide your own interrupt handler.

#230 (#24A) is the address of the ‘dlow’ interrupt routine. Control is passed to here at the end of the
fast interrupt routine. Although 3 bytes are reserved here, thereis only the single-byte instruction RTI
present normally.

#228(4247) contains the jump vector for the NMI (Non-Maskable Interrupt) routine, which on the Oric
connects to the * Reset button’.

On version 1.1 only, there are a few extra jump vectors located in page 2 which are concerned with
input/output:

[. #238 linksto the screen output routine used by BASIC commands like PRINT.
#23B jumps to the subroutine which finds which key was last pressed.

#23E jumpsto the printer output subroutine.
#241 contains a jump to the subroutine that prints messages on the top line of the screen. Changing
this jump could be useful if you want to stop messages like ‘Loading’ from showing.

Eal SN

By far the most useful of these patches is the dow interrupt jump which allows you to make the
maximum use of the system’ s interrupts.

3.8 Interrupts

The purpose of an interrupt is to stop a program temporarily and to enter a special subroutine in order
to handle a priority condition. An interrupt on a computer will often be caused by a peripheral (such as
a card-reader) announcing that it has datato transfer.

The Oric takesits interrupt line from the 6522 V1A device which is capable of causing an interrupt for
avariety of reasons. Unless the Oric isloading or saving to the cassette port, the 6522 is set up to create
an interrupt at exact intervals of 10 000 machine cycles— or every 10 ms. In other words, the machine
isinterrupted every one-hundredth of a second. (Y ou should be warned that some BASIC instructions
may cause an interrupt to be missed — e.g., PRINT.)

The length of time between interruptsis stored on the 6522’ s timer-1 latch at #306,7. By atering
locations #306,7 you affect:

1. The repest rate on the keyboard.

2. Theflash rate of the cursor (but not the automatic flash of the VDU chip).

3. The speed of the WAIT command.

4. The speed of processing isinversely affected. This happens because the interrupts ‘ steal” time
from the processor; the more time spent in interrupt handling, the lessis available for the main
task.

When an interrupt occurs, and providing that the *fast interrupt’ jump vector has not been altered, the
following events take place:

1. The three software timers are decremented by one. These are 16-bit counters located in page 2 of
memory and will be discussed in Sec. 3.9.

2. If thefirst timer has reached zero, after counting down from 3, the keyboard is scanned in a search
for any keypress.

3. If the second timer has reached zero, counting down from 25, the cursor is flashed on or off.
Note that the timers being discussed are merely counters in RAM, and should not be confused with the
timer-1 and timer-2 of the 6522.

When an interrupt occurs, the 6502 jumps to the address given by locations #FFFE and #FFFF. Aswas
discussed in Sec. 3.7 thisaddress isin page 2 of RAM, and the jump into ROM can be modified for
ONe' s own requirements.

If the fast interrupt routine does jump into ROM the last operation is to jump back to the slow interrupt
location in page 2, containing the RTI instruction.

Y ou would use the fast interrupt patch if you wanted to add some processing before the keyboard is
scanned. The slow interrupt link allows you to add some processing after the keyboard has been
scanned.

If you intend to modify the interrupt routines, remember:

1. Saveall theregisters that you use, and restore them before you finish.

2. Save any locations that might be in use by the system. For instance, if your interrupt routine calls
the SOUND command you will need to save locations #2EQ to #2EF and #204 (#204 is used when
checking your SOUND parameters).

At the end of your interrupt routine, you will usualy either execute the RTI instruction if all interrupt
processing is complete, or jump back into the normal ROM interrupt routine (to read the keyboard,
etc.).

Writing interrupt routines is much more difficult than writing anormal subroutine. For one thing,
testing can frequently crash the whole machine, and often a fault will not show up for along time. Two
important points are:

1. Remember to save any location that could be used by both your interrupt routine and the main
program.

2. Do not assume the state of any of the processor flags. Be especially wary of the decimal flag —
use CLD or SED if you are doing any addition or subtraction.

Several programs in this book modify the interrupt patches, and by understanding how these work you
will be able to create your own routines.

NON-MASKABLE INTERRUPT

The Reset button on the Oric does not in fact connect to the RESET line of the 6522. Instead, it
activates the Non-Maskable Interrupt (NMI) line of the 6502. Whereas a normal interrupt can be
disabled, the NMI causes an unconditional jump to the address contained in locations #FFFA, #FFFB.
On the Oric, thisisajump instruction in page 2 of memory which on the Oric normally leadsto a
‘warm-start’ routine in ROM. This sets up the 6522, clears the screen, initializes the character sets, and
returns to command mode in BASIC.

When writing machine-code programs it is customary to alter the appropriate address in page 2 (see
Sec. 3.7) so that pressing the reset button restarts the machine code program. The button can be
disabled by typing POKE DEEK (#FFFA),64.

The ‘BRK’ instruction causes an interrupt, but sets the BRK flag in the 6502 processor. It is used by
some machine code monitors as a terminating command — just as RTS is used to return to BASIC after
aCALL instruction.

Use RTS instead of BRK if your machine code monitor expectsit.
3.9 Software timers

This subject was mentioned when interrupts were discussed. There are three 16-bit counters stored in
RAM, maintained by the interrupt routine. The first two timers are in permanent use on the Oric: the
first countsthree interrupt cycles (normally 30 ms) before each keyboard read while the second counts
25 interrupts (250 ms) before flashing the cursor on or off. The third software timer is only used
occasionally by the system —for WAIT, TEXT, and (in version 1.0 only) when using the HIRES
command. This meansthat it is available for use within your own program. With very little trouble,
you can time events to one-hundredth of a second.

Remember that the software timers will only be decremented when interrupts have been enabled.

Each of the three timers occupies 2 bytes, in the normal tradition of the low byte first, starting at #272.
Therefore, the all-important third timer islocated at #276,7. The WAIT command can be simulated by
asimple use of DOKE and DEEK into location #276, but with the advantage that the program can do
further work while the third timer is counting.

Although it isa simple matter to set up this timer, there are a number of subroutinesin ROM which
handle each of the timers.

The A, X, and Y registers need to be set up as follows:
A — set to the timer number minus one. For instance, the third timer requires a value of two.

Y —set the Y register to the low part of the timer value.
X —set the X register to the high part of the timer value.

Here is atable of calswhich relate to the software timers:

Name Version 1.0 Version1.1
Start 6522 Clocks #ECC7 #EDEO
Stop 6522 clocks #EDO1 #EE1A
Update timers etc #ED1B #EE34
Clear all timers #ED70 #EESC
Read atimer into X Y #ED81 #EE9D
Write XY into atimer #EDS8F #EEAB
Wait for time X 'Y #EDAD #EEC9

8.10 Machine code advice

As mentioned previously, a book on machine code is essential, not only to teach the subject but asa
constant guide to the 6502. This section covers some of the more error-prone areas of programming, in
the hope that you may learn from my own mistakes!

BRANCHES

The following observations may be useful:

1. Any branch will depend on one bit within the processor status register. Branch instructions work in
pairs, e.g., BEQ, BNE; BCS, BCC.

2. The operand in the branch instruction gives the number of bytes, forward or backward, to jump. If
this number is between 0 and #7F the branch is forward in memory; otherwise the jump is to a previous
location. When a backward branch is required the operand is#100 minus the number of locations that
you are jumping. For example: 1200 BNE 11C2 resultsin an operand of (#100 — (#1202 —#11C2)) =
#CO.

Any good machine code monitor will work out branch offsets for you. An assembler will allow you to
enter either an absolute address or a meaningful label.

COMPARE

A newcomer to 6502 programming can become confused with the CMP instruction when testing less-
than or greater-than conditions.

The compare instruction worksin a similar way to subtract as regards the use of the carry flag. When a
subtraction is done, the carry flag is used to indicate a borrow when the value being subtracted is
greater than the accumulator. The advantage of the compare instruction isthat the A, X, and Y registers
are not affected.

When writing a compare instruction do amental subtraction of the value given in the instruction from
theregister value (A, X, or Y). If theresult is zero, the zero flag is set. If theresult is positive, including
zero, the carry flag is set; otherwise it is cleared.

THE BIT INSTRUCTION
BIT is probably the least used of all theinstructions— CMP is often used instead.

Like the compare instruction, BIT only alters flags in the processor status register.

If you wanted to examine anumber of locations, picking out one bit, then you would load the
accumulator with the bitsto examine and just use BIT with each address. If you used the AND
instruction, you would need to keep reloading the accumulator.

BIT also traps bits 6 and 7 of the location you are examining, reflecting them in the overflow and
negative flags.

Because BIT does not affect the A, X, and Y registers, you can use BIT in a sneaky way to conserve
memory. Consider the program:

TRY1 LDA#1

BNE CARRY-ON
TRY2 LDA #2

BNE CARRY-ON
TRY3 LDA #3
CARRY-ON:
This can bereplaced by:
TRY1: LDA#1

#2C
TRY2: LDA #2

#2C
TRY3: LDA #3
CARRY-ON:

The ‘2C’ isthe opcode for the 3-byte version of BIT. Here we use the fact that BIT does not alter the
accumulator in order to skip past one or two load instructions. Y ou will find this kind of confusing
programming when you disassemble the Oric’s ROM.

The saving is so small asto be not worth the trouble, but it does demonstrate an interesting
programming technique.

THE STACK

When using the stack remember:

1. In a subroutine you must leave the stack as you find it. This meansthat if you execute 5 PHA
instructions, you must balance them with 5 PLA instructions. Thisis important because the RTS
instruction will be expecting a return address on the stack.

2. Tofollow up thelast point, here isa common mistake:
1000 PHP

1001 JSR 1234

1234 PLP; attempt to pass processor stack.

3. When saving all the registers on the stack, use a sequence such as:

PHP PHA TXA PHA TYA PHA
When you want to restore the registers, remember to reverse the order:

PILA TAY PLA TAX PLA PLP

If you are saving an area of memory on the stack you will need to reverse the loop when loading
back from the stack. For example, if thisis your save routine:

LDX #F

A:

LDA 2EO,X
PHA

DEX

BPL A

then the reverse procedure is:
LDX #o0

A:

PLA

STA 2EO,X

INX
CPX #10
BNE A

The stack provides the only way of examining the complete processor status register:

PHP PLA
Similarly, to set up the processor status register in one go:

LDA #47

PHA

PLP

DECIMAL INSTRUCTIONS

When a program goes unaccountably wrong always consider the state of the decimal flag. The normal
state for the decimal flag is off. Many ROM subroutines will expect the decimal flag to be cleared, so
remember the CLD instruction.

The decimal flag is only recognized when using either the ADD or SBC instructions, whereas INC and
DEC will always work in binary.

SHIFT AND ROTATE

When using any of the shift or rotate instructions, remember:
1. There is aways one bit coming away from the byte. Thisis always saved in the carry flag.

2. Thereis always one bit coming into the byte. Thisis either zero for shift instructions or the old carry
flag for rotate instructions.

3. Therotate instructions work on 9 bits at atime. Therefore, if you rotate 0000 0001 to the right, the 1
will not appear on the left until afurther rotate instruction.

CLEAR CARRY AND SET CARRY

Two simple rules apply here:

1. Clear the carry flag before doing an addition. If adding numbers longer than 8 bits, leave carry
alone after the first clear carry instruction; for example:

CLC

LDA O
ADC 2
STAO
LDA 1
ADC 3
STA 1

INCREMENT AND DECREMENT

Important points:

1. INC and DEC take no notice of the decimal flag —they always work in binary.
2. INC and DEC do not either use or alter the carry flag. If you want to increment a 16-
bit value, use a branch instruction, asin:

INC 42
BNE B
INC 43
B:

When decrementing numbers, you have to use a compare instruction:

DEC 42
LDA 42
CMP #FF
BNEC
DEC 43
C: NOP

3. When using INC or DEC with several bytes, remember that you can only safely do
one set of INC or DEC instructions at a time. The following example employs such
faulty logic:

INC 42
INC 42
BNE A
INC 43

A NOP

RETURN FROM INTERRUPT

Remember to use RTI to finish an interrupt routine. The only difference between RTI and RTS s that
with RTI the 6502 saves the processor flag on the stack. This means that an interrupt routine need not
save the processor status register.

SUBROUTINES

When the jump to subroutine instruction is executed, the return address is saved on the stack. This
address is saved high byte followed by low byte (this follows the 6502 convention of alow address
being stored in the lower location). This return address on the stack is always one less than the real
return address — the 6502 adds one to the program pointer before executing each instruction.

SElI AND CLI

On the Oric an interrupt can occur at any time. If you want to disable interrupts (which will stop the
keyboard from being scanned and the cursor flashing) you can use the SEI instruction. CLI (clear
interrupt disable) enables interrupts again.

Note that SEI does not stop the 6522 clocks from running, but it does prevent interrupts from being
generated when the clocks reach zero.

SEI should be used when your program is using the stack areain a non-standard way.
3.11 Using the! extension command

The! command allows you to create your own BASIC command. When BASIC encountersthe ! token
it jumpsto the address stored at #2F5,6, assuming it to be a normal subroutine.

PASSING DATA

PEEK and POKE provide one way to send data between your extension subroutine and BASIC, but a
better way is to put the data after the ! command, as you would do for any other BASIC command.

The pointer #E9, #EA will be identifying the byte following the! command as you enter your
subroutine. Y ou can (and must) use this pointer to extract all the data pertaining to the command. When
you exit from your subroutine #E9, #EA must be pointing to the byte following the last byte in your
command.

In order to look at each character, you can call subroutines at #£2 (which increments #E9, #EA) or #E8
(which does not increment #E9,#EA). After the call the next character is passed in the accumulator.
This can be used to pass over delimiters, such as commas.

USING THE FORMULA EVALUATION ROUTINE

If you want the extension command to work with expressions (such as X+ Y) as well as fixed-format
data, you may need to call the ROM subroutine which evaluates an expression.

This subroutine (at #CE8B for version 1.0 ROMs or #CF17 for version 1.1 ROMs) only needs the

WES9, #EA pointer to be set up. At the end of the subroutine the #E9, #EA pointer will be correctly set
to the character following your expression. Note that the expression evaluated can contain the normal
BASIC functions, e.g., ! X* SQR(Y), but be warned that the subroutine assumes that all words have
been compacted into tokens — including such things as the +,—*, and / operators. Asin BASIC,
expressions must be terminated with a comma, colon, or 000 (i.e., the end of a BASIC line).

There are two possible types of answer returned:

1. A string of characters. The information about this string is stored in an area of memory pointed to
by the address #DR, WDA4. In this temporary area there are three bytes: length (one byte) and
address of string (two bytes). When the formularesultsin a string, location #28 is set to OFF. Once
you have finished with the string, you must release the temporary area it used by calling either
#D712 (version 1.0) or gD7CD (version 1.1).

2. A floating-point number. This number is stored in the floating-point accumulator (see Chapter 6).
Location 028 is set to zero to indicate anumeric result.

If you want to convert the number into a signed 2-byte integer, you can simply call #D871 (version
1.0) or #D92C (version 1.1). Thiswill return Y asthe low byte and A asthe high byte. For an
example of usirv ! see Chapter 4.

3.12 Using the & extension function routine

Whereas ! can only be passed data, the % function not only expects data to be passed but also returns a
value. The & facility assumes that g2FC, #2FD points to the machine code routine.

PASSING DATA

There are two types of datathat can be passed — a string of characters or a number. In both cases, &
must have an argument following, surrounded by parenthesis. For example, & (A$), & (4.3+S).

The formula evaluation takes place automatically on the argument, and the results are exactly the same
as described in Sec. 3.11.

When a number is passed, you can either takeit or leave it, but a string requires extra action.

If your subroutine has been passed a string, you must call subroutine #D7F1 (version 1.0) or #D8AC
(version 1.1) in order to free up the temporary string space. Thiswill also extract the necessary
information, storing the length in the accumulator and the address of the string in #91, #92.

RETURNING DATA

Returning data will usually be the final thing that the subroutine does. L ocation #28 should be set to
zero if you are returning a number, or #FF if the result is a string.

To return anumber you simply leave that number in the floating-point accumulator at #DO to #D5 —
see Chapter 6.

Returning a string is a little more complicated, since you must first allocate an areafor it. Thisis done
by putting the length (in bytes) into the accumulator and calling #D4FO (version 1.0) or #D5AB
(version 1.1). Thiswill leave the address of the new string at #D1, #D2. Once you have put the string at
this address, you must finish the subroutine with:

PLA
PLA
JMP #D539 (for version 1.0)
JMP #D5F4 (for version 1.1)
When returning a floating-point number, you exit with the usual RTS instruction.

EXAMPLE: THE INSTR FUNCTION

On some computers you will find the ' INSTR’ function. This searches for a string of characters within
another string, returning its position, if found.

For example, INSTR(*ABCD”,”BC",1) is 2 (the |ast parameter 1 indicates the start position of the
search).

The subroutine of Program 3.2 simulatesthe INSTR function. The function is called by a statement
such as: A=&(“T$,S$,N").

String S$is searched for within string T$, starting at position N. The quotes are used since R can only
take one parameter; this means that you can only use simple variables (such as A$) in the actual

statement.

The listing will work unchanged for version 1.0 owners, but users of version 1.1 ROMs should make
the following adjustments:

9800 JSRDS8AC
981D JSR CF17
982D JSR CF17
983D JSRCF17
9840 JSRD92C
987B JSR D499

To use INSTR, you must first type DOKE #2FC, #9800.

F800: 20 F1 D7 JSR sDTF1

F803: A0 09 LDY #%09
FBOS: BY 33 Q0 LDA SO033,.Y
FB08: 48 PHA

F80%: 86 DEY

FBOA: 10 F9 BFL $9805
980C: AS ET LDA $E%
9BDE: a8 PHA

9BOF: AS EA LDA SEA
8i1r 48 PHA

ML2r A0 01 LDY #s01
981i4: B1 DI LDA (D). Y
PH14: B85 ET STA S$E9
9818r CB INY

28191 Bl DI LA ($D3),Y¥
P81B: 85 EA STA S$EA
981D: 20 BB CE JSR $CEBB
P820: &D 02 LDY #s07
9822: Bt D3 LDA ($D3)_ v
FA24: 99 35 00 STA $003I5,Y
¥g27: B8 DEY

9828: 10 F8 BPL $98B2Z2
FAZA1 20 EZ2 00 JSR SO0OEZ2
82Dt 20 BB CE JSR sSCEBB
FAIe A0 02 LDY #%02
g3y Bl D3 LDA ($DZ),¥
FBT4: 99 IB OO ETA $0038,Y
8371 88 DEY

933@: Lo FB BPL s$9832
F83A: 20 E2 00 JSR $ODEZ
83D: 20 8B CE JSR $CEBBE

F840: 20 71 DB JSR sDE71
FB43: 38 SEC

oB44: a5 35 LDA %35

9844: ES 38 SBC $38
9848: ©5 35 STA %35
984A: E& 35 INC $35
984C: C& 33 DEC %33
984E: a5 33 LDA $33
9850: &5 3B STA $3B
9852: C5 35 CMP %35
o854 : BOD 21 BCS 9877
9856: A9 00 LDA #%00
9858: B85 3IC STA $3C
985A4: A4 3B LDY $3B
9g85C: Bl 3& LDA ($36),Y
985E: A4 3C LDY $3C
9860: D1 39 CMP ($39),Y
9862: DO OF BNE 9873
9864: E& 3B INC $3B
986&: E& 3C INC $3C
FEAH: Ao iC LDA %3C
986A: C5 3B CMP $38
9864C: DO EC BNE $985A
784E: A4 3T LDY 433
9870: CB INY

9871: DO O& BNE $9879
9873: Eé 33 INC $33
9875: DO D7 ENE $9B4E
9877: A0 00 LDY #%00
87 A9 00 LDOA #HEOD
9878: 20 ED D3 JSR $D3ED
987E: &8 PLA

IBTF: BS EA STA $EA
9881: &8 PLA

9882: B85 E9 STA $E9
9884: A0 09 LDY #$09
9a86: &8 PLA

f887: 99 I3 00 STA $0033.Y
988A: B8 DEY

988B: 10 F9 BPL $988&
988D: &0 RTS

988E: EA NOP

988F: EA NDP

9890: EA NOP

Program 3.2 INSTR

3.13 Areal-time clock
Program 3.3 isa short program to give your programs a clock that can return the current time of day.

0810:
084112
04121
0413:
24162
0418:
041EB:
I41C:
Og41F =
0421:
Ga24:
0426
0428:
D42A:
042D;
O42E:
0431
0433:
O435:
Q438:
D&3ZA:
Q43C:
O43F:
0444 :
447
0445z
o448:
O44A:
084C:
O44F =
0451 :
04521
085%5:
0457
245A:
045B:
045C:
O45E :
045601
4535:
0464 ;
4641
o4&£8:
Na&B:
O45F =
Q4 EF
C471:
0ar72:

Program 3.3 Clock

48
18
Fa8
AD
&9
aD
Da
AD
59
BD
ce
DO
AT
8D
18
AD
&9
an
ce
Do
AT
8D
18
AD
o7
ap
ce
DO
AT
8o
1B
AaD
&9
8D
&8
40

"
-

A7
2D
Ca
10
A2
BD
e
CA
10
&)

C4
01
cCa

CS
00
CS

-
“m

32
o0
cS

Cé
01
Cé
2C
20
o0
Cé

c7
01

-
18
OE
00
cC7

cCE
o1
cCg

(4
2
C4

FA
o2
72
30

F7

0z

02

L

02

a2

a4

e
il

4C 12 049

FHA
CLC

LDA
ADC
s5TA
CLD
LDA
ADC
=TA
CMF
BNE
LDA
5TA
CcLC
LDA
ADC
5TA
cCwpP
BNE
LDA
STA
CcLC
LDA
ADC
STA
CMP
ENE
LDA
SThA
CLC
LDA
ADC
ETA
FLA
RTI
LDX
LDA
5Ta
DEX
BFL
LDX
LDA
S5TA
DEX
BFL
RTS
JMFP

$02C4
#%01
$02C4

$02C5
#$00
$02C5
#$3C
FO45A
#5200
FO2CE

F0O2CE
HEO]L
$02C4
#+32C
$045A
#400
$O2C6

$02C7
#E0O1
$02C7
#%18
$0454
#$00
$02C7

$02CH
#&01
£Q2CE

#$04
#%00
$02C4,

$04560
#$02
$0472, X
$0230, X
$0448

$0410

The time can be set up (and read back) using PEEK and POKE from the following locations:
#2C5 Seconds

#2C6 Minutes

#2C7 Hours

#2C8 Days

Location #2C4 is used to store one-hundredth second intervals — but thisis not in a suitable form for
reading.

Owners of version 1.1 ROMs should change the instruction at #46B to STA 24A,X. To start the clock
CALL#45C.

ACCURACY

The clock will stay fairly accurate, except when certain commands are used. The most serious
problems will arise when doing any tape saving or loading. A minor loss of time can happen during any
sound command and when scrolling occurs.

3.14 Relocater program

To complete this chapter, here is a program that allows you to move a machine code program to a
different address (Program 3.4). All 3-byte instructions are modified, where necessary, reflecting the
new start address.

Since a program may reference locations near to itself, but not actually part of the program, the
relocater needs five addresses:

#70, #71 Start address of whole area.
#72#,73 End address of whole area.

#78, 079 Start address of actual program.
#7TA, #7B End address of actual program.
#7C, #7D New start address of program.

The routine can only cope with instructions — it cannot handle data. If your program has imbedded data,
you will have to use the utility in stages.

For example, to move the instruction: 1000 INC 1234 to #2000 (assuming that 1234 is alocation that
will now become 2234), you would need to set up the following addresses:

#70, #71-00 10
#12,#73-34 12
#78, #79—-00 10
#7A, #7B -02 10
#7C, #7/D —-00 20

Theroutineis entered from address #440 and does not have any calls to the ROM.

0474:
0475:
D478:
QA47TA:
O47B:
Q47D:
O47F:
0481:
o485:
o4B5S:
0487 :
0489 :
04B8B:
0480:
O48F :
Q470 :
0492:
0494:
04952
0499

AS
ES
BS
AS
ES
B35
AQ
Bl
1
29
ce?
FO
ce
FO
B1
A2
DD
Fo
CA
10
A2z
DD
FO
CA
10
29
ce
Fo
ca
B1
21
Do
Fo
AD
Bl

CS
FO
90
BO
a8

Bl
C3
J0
AD
AS

7C
78
-

79

83

78
7C

2RISR

F8
OF
08
4D

78
7C
46
44
02
78
71
04
2F
07

78
Fi*)
25
o2
TI

(listing continues)

14

04

CLD

LDA
SBC
SThA
LDA
SBC
SThA
LDY
LDA
5Ta
AND
CHMP

CHF
BEQ
LDA
LDX
CHMP
BELR
DEX

LDX

BCC
LDY
LDA

$7C

$78

$76

$7D

$79

$77
#5500
($78),Y
($7C), Y
#SOF
#$0D
$0483
#E0E
$0483
($78),Y
#E10
$0420, X
$0483

$0452
#+0D
$04Z1,X
$04LC7

FO4460
#EOF
#4508
$04C7

($78),Y
($7C), ¥
$04C7
$04C7
#$02
($78), ¥
$71
$046F
$04BC
$0494

($78),Y
$70
$04BC
4302
$73

O49A:
049C:
049E:
Q4A0:
04A/2:
04A3:
O04Aa5:
04A7:
04A9:
04AB:
O4AD:
O4AE =
DB
0aB2:
04B3:
04BS:
O4B7
04B9:
Q4BA:
O4BC:
04BE:
0400
0402 :
QL=
oaCS:
o4qL 7 :
03C8:
0407
04CA:
O4CC:
O4CE :
O4D0:
a4D2:
a4D35:
04D4:
O4D&:
04D8:
o4DA:
04DC;
DO4DE:
OqECH:
O4E2:
D4E4S =z
O4E&S:
4EB:
O4EA:
O4EC:
O4ED:
O4F Oz

D1
FO
90
BO
g8
aAS
D1

F0
Al
Bl
i8
&5
21

ca
Bl

&5
21

8
BO
AD
B1

21

cB
Bl

1
ca
98
18
&3
85
F0
E&
18
28
&5

=
-

F0
E&
as
C5
FO
BO
Q0
AS
CS
F0
&0
ac
EA

78
04
IC
o7

78
13
21
7B

7&
7C

78
77
JC

OB
01
7e
7C

78
7C

78
78

-
a

79

7C
7C
02
7D
e
7B
04
o8
o7
78
7h
o1

4E 04

CHMP

BCC
BCS
DEY
LDA
CMF
BCC
LDY
L-DA
CLC
ADC
STH
ITNY
LDA
ADC
s5TA
SEC
BCS
DY
LD#A
5TA
INY
LDA
5ThA
INY
TYA
CLC
ADC
5TA
BCC
INC
CLC
TYA
ADC
STA
BCC
INC
LDA
(o, o
BEQ
BCS
BCC
LDA
CMF
BCC
RTS
JHMF
NOF

($78),Y
$04A2
$04BC
$04A9

$72
($78),Y
$04BC
#$01
(£78),Y

$76
($7C), Y

($78),Y
77
($7C), Y

$04C7
#501
($78),Y
($7C), Y

($78), Y
($7C), Y

%78
%78
$04D2
579

$7C
s7C
$04DC
£7D
79
7B
$0O4ESL
$O4EC
$+O4ED
£78
®7A
+04ED

$044E

04F1: EA NOF

04F2: EA MOF
O4F3Z: EA NOF
04F4: EA NOF
C4FS: EA NOF
04Fs&: EA NOFP
04F7: EA NOP
04F8: EA NOF

04203 79 39 DY EC CC 59 4C &C
0428: 20 BY AC BC 19 F9 99 8C
0430: 00 0A OO0 BB CA 4A EA 2A
0438: 6A 40 60 AA BA BA 9A 00

Program 3.4 Relocater program (#420 — #43F and #440 - #4F0)

4. THE KEYBOARD AND CASSETTE SYSTEM

4.1 Keyboard

HARDWARE

The hardware which enables the keyboard to work has already been described in Chapter 1. To
summarize, the keyboard is scanned every 30 ms using port A of the 8912 and port B of the 6522. This
is done by writing to each column and row in the keyboard matrix — identifying just one key at atime.
At any moment there may be any number of keys pressed, but although the automatic scanning routine
only looks for one key (or two, if you count the shift and control keys) it is still possible to look for
multiple keypresses.

USEFUL LOCATIONS

The keyboard routines in ROM |eave behind a number of useful locations.

The most important address is #2DF which contains the ASCII value of the last keypress. This
value is OR’ ed with #80 by the keyboard routine to indicate that the keypress has not been
processed.

‘I"hislocation is subject to delays when the same key is pressed twice because of the autorepeat
feature, so often you will want a faster access to the keyboard. Location 4208 is set to a unique
value when akey is pressed, but there is no direct correspondence between this value and the ASCII
sequence — you will need to use agood deal of trial and error. The value here is a combination of
two 3-bit column and row numbers.

For example, when ‘A’ is pressed (in both upper-case and lowercase) you will find that location
4208 contains #AE.

The two shift keys and the control key are not recorded in location #208, but instead at 4209. This
makes it possible to differentiate between the left and right shift keys — useful for games, etc.

USEFUL ROM ADDRESSES

When fast key action is not required, a machine code program can quickly get the ASCII code of the
last keypress with one of two calls:

47

1. Toread akey without waiting, returning the ASCII code in the accumulator, call subroutine
#E905 (version 1.0) or #EB78 (version 1.1). Thisisidentical to using KEY$in BASIC.

2. Towait for akey to be pressed (i.e, like GET in BASIC), call either #C5F8 (version 1.0) or
#C5E8 (version 1.1).

INDEPENDENT KEYPRESS ROUTINE

The normal method of detecting keypressesis dow and inefficient, since the whole keyboard must be
scanned 33 times a second and interrupts must be running for this to happen.

More importantly, the limitation of being able to read only one key at atime can be areal hurdle when
writing a game program.

Program 4.1 shows a short subroutine that examines only one key and sets the zero flag to reflect the
state of the key. In other words, the zero flag is set when the key is not pressed and clear when the key
is pressed.

4000 o8B FHF

Q0021 1 78 SEI

4002 48 FHA

4003 A9 CQE LDA #%0E

4005: 20 IS FS JSR $F53I5
408 : &8 FLA

400%9: 09 BA ORA #$EBB

400B: 8D 0D 0= 5TA $0300
400FE : AZ D4 LDX #%04

4010: CA. DEX

4011: DO FD BNE $401¢0
401Z%: AD OO 03 LDA $0300
4014 29 08 AND #%08

4018: AAH TAX

4019 28 PLP

401A: 84 TA

4018 &0 RTS

Program 4.1 Read keyboard subroutine

This subroutine can be used for any number of keys simultaneoudly. It requires two registersto be set
up: the accumulator should contain the row number (0 —7) and the X register should be set to the
column number. The column number is one bit cleared in a byte containing OFF, i.e., #7F, #BF, #DF,
#EF, #F7, #FB, g FD, or #FE. Aswith location #208, the required values do not fall in arecognizable
pattern — Table 4.1 givesthe A and X values for each possible key. Version 1.1 users must change the
instruction at #4005 to JSR #F590.

Table 4.1 Keypressvalues

Key required Accumulator X register
123 020 DF BF 7F
456 202 F7 FB FD
789 073 FE FEFD
0-= 737 FB F7 7F

\ESCQ 311 BF DF BF
WER 661 TFF7FB
TYU 165 FD FE FE
IOP 555 FD FB F7
[1] DEL 555 7F BF DF
CTRLAS 266 EF DF BF
DFG 116 TFF7FB
HJK 613 FD FE FE
L;“ 733 FD FB 7F
RETURN 7 DF

SHIFT (LEFT) 4 EF
ZXC 202 DF BF 7F
VBN 020 F7 FB FD

M comma period 244 FE FD FB
[SHIFT (RIGHT) 77 F7 EF
LEFT ARROW 4 DF
DOWN ARROW 4 BF
SPACE 4 FE
UP ARROW 4 F7
RIGHT ARROW 4 7F

4.2 Cassette input/output

This section will describe the various ways in which the cassette system can be used.

There are three programs described in this part of the chapter, each giving an extrafacility that can be
used from BASIC.

Theroutinesin ROM that allow cassette 1/0 are neatly structured so that saving and loading can be
done either:

1. Asacomplete section of memory.
2. Onebyteat atime.
3. One hit at atime.

The third option is not used in this chapter; most applications are only concerned with whole bytes.
However, Sec. 9. | — speech synthesis — shows how bits can be read from the cassette hardware.

Saving and loading bytesis often more useful than saving alarge area since you can have a free hand
asto the exact format of your data on tape.

This is one subject where the two versions of ROM differ greatly: both the subroutine addresses and
the usage of page 0 and page 2 are atered.

Generally, version 1.1. uses page 2 to store filenames and flags, whereas version 1.0 uses the BASIC
input buffer area— g3F to #67.

4.3 Saving an area of memory

The sequence of events when saving a block of memory (remember that a BASIC program isjust a
block of memory) is:

1. Disable interrupts and change the 6522 into cassette mode.
2.